4 research outputs found

    Air Stable Magnetic Bimetallic Fe–Ag Nanoparticles for Advanced Antimicrobial Treatment and Phosphorus Removal

    No full text
    We report on new magnetic bimetallic Fe–Ag nanoparticles (NPs) which exhibit significant antibacterial and antifungal activities against a variety of microorganisms including disease causing pathogens, as well as prolonged action and high efficiency of phosphorus removal. The preparation of these multifunctional hybrids, based on direct reduction of silver ions by commercially available zerovalent iron nanoparticles (nZVI) is fast, simple, feasible in a large scale with a controllable silver NP content and size. The microscopic observations (transmission electron microscopy, scanning electron microscopy/electron diffraction spectroscopy) and phase analyses (X-ray diffraction, Mössbauer spectroscopy) reveal the formation of Fe<sub>3</sub>O<sub>4</sub>/γ-FeOOH double shell on a “redox” active nZVI surface. This shell is probably responsible for high stability of magnetic bimetallic Fe–Ag NPs during storage in air. Silver NPs, ranging between 10 and 30 nm depending on the initial concentration of AgNO<sub>3</sub>, are firmly bound to Fe NPs, which prevents their release even during a long-term sonication. Taking into account the possibility of easy magnetic separation of the novel bimetallic Fe–Ag NPs, they represent a highly promising material for advanced antimicrobial and reductive water treatment technologies

    Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy

    No full text
    Accurate and rapid diagnosis of prosthetic joint infection (PJI) is vital for rational and effective therapeutic management of this condition. Several diagnostic strategies have been developed for discriminating between infected and noninfected cases. However, none of them can reliably diagnose the whole spectrum of clinical presentations of PJI. Here, we report a new method for PJI detection based on magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) using streptavidin-modified magnetic nanoparticles (MNP@Strep) whose surface is functionalized with suitable biotinylated antibodies and then coated with silver nanoparticles by self-assembly. The high efficiency of this approach is demonstrated by the diagnosis of infections caused by two bacterial species commonly associated with PJI, namely, <i>Staphylococcus aureus</i> and <i>Streptococcus pyogenes</i>. The method’s performance was verified with model samples of bacterial lysates and with four real-matrix samples of knee joint fluid spiked with live pathogenic bacterial cells. This procedure is operationally simple, versatile, inexpensive, and quick to perform, making it a potentially attractive alternative to established diagnostic techniques based on Koch’s culturing or colony counting methods

    Synthesis, Cytostatic, Antimicrobial, and Anti-HCV Activity of 6‑Substituted 7‑(Het)aryl-7-deazapurine Ribonucleosides

    No full text
    A series of 80 7-(het)­aryl- and 7-ethynyl-7-deazapurine ribonucleosides bearing a methoxy, methylsulfanyl, methylamino, dimethylamino, methyl, or oxo group at position 6, or 2,6-disubstituted derivatives bearing a methyl or amino group at position 2, were prepared, and the biological activity of the compounds was studied and compared with that of the parent 7-(het)­aryl-7-deazaadenosine series. Several of the compounds, in particular 6-substituted 7-deazapurine derivatives bearing a furyl or ethynyl group at position 7, were significantly cytotoxic at low nanomolar concentrations whereas most were much less potent or inactive. Promising activity was observed with some compounds against <i>Mycobacterium bovi</i>s and also against hepatitis C virus in a replicon assay

    Lipophosphonoxins II: Design, Synthesis, and Properties of Novel Broad Spectrum Antibacterial Agents

    No full text
    The increase in the number of bacterial strains resistant to known antibiotics is alarming. In this study we report the synthesis of novel compounds termed Lipophosphonoxins II (LPPO II). We show that LPPO II display excellent activities against Gram-positive and -negative bacteria, including pathogens and multiresistant strains. We describe their mechanism of action–plasmatic membrane pore-forming activity selective for bacteria. Importantly, LPPO II neither damage nor cross the eukaryotic plasmatic membrane at their bactericidal concentrations. Further, we demonstrate LPPO II have low propensity for resistance development, likely due to their rapid membrane-targeting mode of action. Finally, we reveal that LPPO II are not toxic to either eukaryotic cells or model animals when administered orally or topically. Collectively, these results suggest that LPPO II are highly promising compounds for development into pharmaceuticals
    corecore