11,578 research outputs found
An Upper Bound to Zero-Delay Rate Distortion via Kalman Filtering for Vector Gaussian Sources
We deal with zero-delay source coding of a vector Gaussian autoregressive
(AR) source subject to an average mean squared error (MSE) fidelity criterion.
Toward this end, we consider the nonanticipative rate distortion function
(NRDF) which is a lower bound to the causal and zero-delay rate distortion
function (RDF). We use the realization scheme with feedback proposed in [1] to
model the corresponding optimal "test-channel" of the NRDF, when considering
vector Gaussian AR(1) sources subject to an average MSE distortion. We give
conditions on the vector Gaussian AR(1) source to ensure asymptotic
stationarity of the realization scheme (bounded performance). Then, we encode
the vector innovations due to Kalman filtering via lattice quantization with
subtractive dither and memoryless entropy coding. This coding scheme provides a
tight upper bound to the zero-delay Gaussian RDF. We extend this result to
vector Gaussian AR sources of any finite order. Further, we show that for
infinite dimensional vector Gaussian AR sources of any finite order, the NRDF
coincides with the zero-delay RDF. Our theoretical framework is corroborated
with a simulation example.Comment: 7 pages, 6 figures, accepted for publication in IEEE Information
Theory Workshop (ITW
The Connection Between Reddening, Gas Covering Fraction, and the Escape of Ionizing Radiation at High Redshift
We use a large sample of galaxies at z~3 to establish a relationship between
reddening, neutral gas covering fraction (fcov(HI)), and the escape of ionizing
photons at high redshift. Our sample includes 933 galaxies at z~3, 121 of which
have very deep spectroscopic observations (>7 hrs) in the rest-UV
(lambda=850-1300 A) with Keck/LRIS. Based on the high covering fraction of
outflowing optically-thick HI indicated by the composite spectra of these
galaxies, we conclude that photoelectric absorption, rather than dust
attenuation, dominates the depletion of ionizing photons. By modeling the
composite spectra as the combination of an unattenuated stellar spectrum
including nebular continuum emission with one that is absorbed by HI and
reddened by a line-of-sight extinction, we derive an empirical relationship
between E(B-V) and fcov(HI). Galaxies with redder UV continua have larger
covering fractions of HI characterized by higher line-of-sight extinctions. Our
results are consistent with the escape of Lya through gas-free lines-of-sight.
Covering fractions based on low-ionization interstellar absorption lines
systematically underpredict those deduced from the HI lines, suggesting that
much of the outflowing gas may be metal-poor. We develop a model which connects
the ionizing escape fraction with E(B-V), and which may be used to estimate the
escape fraction for an ensemble of high-redshift galaxies. Alternatively,
direct measurements of the escape fraction for our data allow us to constrain
the intrinsic 900-to-1500 A flux density ratio to be >0.20, a value that favors
stellar population models that include weaker stellar winds, a flatter initial
mass function, and/or binary evolution. Lastly, we demonstrate how the
framework discussed here may be used to assess the pathways by which ionizing
radiation escapes from high-redshift galaxies. [Abridged]Comment: 22 pages, 3 tables, 14 figures, accepted to the Astrophysical Journa
Electrodynamics of an omega-band as deduced from optical and magnetometer data
We investigate an omega-band event that took place above northern Scandinavia
around 02:00–02:30 UT on 9 March 1999. In our analysis we use ground based
magnetometer, optical and riometer measurements together with satellite based
optical images. The optical and riometer data are used to estimate the
ionospheric Hall and Pedersen conductances, while ionospheric equivalent
currents are obtained from the magnetometer measurements. These data sets are
used as input in a local KRM calculation, which gives the ionospheric
potential electric field as output, thus giving us a complete picture of the
ionospheric electrodynamic state during the omega-band event.
<br><br>
The overall structure of the electric field and field-aligned current (FAC)
provided by the local KRM method are in good agreement with previous studies.
Also the <I><B>E</B></I>×<I><B>B</B></I> drift velocity calculated from the local
KRM solution is in good qualitative agreement with the plasma velocity
measured by the Finnish CUTLASS radar, giving further support for the new
local KRM method. The high-resolution conductance estimates allow us to
discern the detailed structure of the omega-band current system. The highest
Hall and Pedersen conductances, ~50 and ~25 S, respectively, are
found at the edges of the bright auroral tongue. Inside the tongue,
conductances are somewhat smaller, but still significantly higher than
typical background values. The electric field shows a converging pattern
around the tongues, and the field strength drops from ~40 mV/m found at
optically dark regions to ~10 mV/m inside the areas of enhanced
conductivity. Downward FAC flow in the dark regions, while upward currents
flow inside the auroral tongue. Additionally, sharp conductance gradients at
the edge of an auroral tongue are associated with narrow strips of intense
FACs, so that a strip of downward current flows at the eastern (leading) edge
and a similar strip of upward current is present at the western (trailing)
edge. The Joule heating follows the electric field pattern, so that it is
diminished inside the bright auroral tongue
Yang-Lee Edge Singularity on a Class of Treelike Lattices
The density of zeros of the partition function of the Ising model on a class
of treelike lattices is studied. An exact closed-form expression for the
pertinent critical exponents is derived by using a couple of recursion
relations which have a singular behavior near the Yang-Lee edge.Comment: 9 pages AmsTex, 2 eps figures, to appear in J.Phys.
Security and confidentiality approach for the Clinical E-Science Framework (CLEF)
Objectives: CLEF is an MRC sponsored project in the E-Science programme that aims to establish methodologies and a technical infrastructure for the next generation of integrated clinical and bioscience research. Methods: The heart of the CLEF approach to this challenge is to design and develop a pseudonymised repository of histories of cancer patients that can be accessed by researchers. Robust mechanisms and policies have been developed to ensure that patient privacy and confidentiality are preserved while delivering a repository of such medically rich information for the purposes of scientific research. Results: This paper summarises the overall approach adopted by CLEF to meet data protection requirements, including the data flows, pseudonymisation measures and additional monitoring policies that are currently being developed. Conclusion: Once evaluated, it is hoped that the CLEF approach can serve as a model for other distributed electronic health record repositories to be accessed for research
Mary H. Gibbon: teamwork of the heart.
Mary Maly Hopkinson Gibbon was born on September 25, 1903, to an affluent New England family who encouraged her to embrace her intelligence and to follow that by which she was intrigued. In doing this, Maly pursued work in scientific research, where she ultimately met her first husband, Dr. John ‘‘Jack’’ H. Gibbon. Jack and Maly were partners in every sense of the word. Their collaboration, both within and beyond the walls of the research laboratory, made it possible for the Gibbon dream of the heart–lung machine to be realized
Low-damping transmission of spin waves through YIG/Pt-based layered structures for spin-orbit-torque applications
We show that in YIG-Pt bi-layers, which are widely used in experiments on the
spin transfer torque and spin Hall effects, the spin-wave amplitude
significantly decreases in comparison to a single YIG film due to the
excitation of microwave eddy currents in a Pt coat. By introducing a novel
excitation geometry, where the Pt layer faces the ground plane of a microstrip
line structure, we suppressed the excitation of the eddy currents in the Pt
layer and, thus, achieved a large increase in the transmission of the
Damon-Eshbach surface spin wave. At the same time, no visible influence of an
external dc current applied to the Pt layer on the spin-wave amplitude in the
YIG-Pt bi-layer was observed in our experiments with YIG films of micrometer
thickness
- …
