37 research outputs found

    An Interactive Approach for Identifying Structure Definitions

    Get PDF
    Our ability to grasp and understand complex phenomena is essentially based on recognizing structures and relating these to each other. For example, any meteorological description of a weather condition and explanation of its evolution recurs to meteorological structures, such as convection and circulation structures, cloud fields and rain fronts. All of these are spatiotemporal structures, defined by time-dependent patterns in the underlying fields. Typically, such a structure is defined by a verbal description that corresponds to the more or less uniform, often somewhat vague mental images of the experts. However, a precise, formal definition of the structures or, more generally, concepts is often desirable, e.g., to enable automated data analysis or the development of phenomenological models. Here, we present a systematic approach and an interactive tool to obtain formal definitions of spatiotemporal structures. The tool enables experts to evaluate and compare different structure definitions on the basis of data sets with time-dependent fields that contain the respective structure. Since structure definitions are typically parameterized, an essential part is to identify parameter ranges that lead to desired structures in all time steps. In addition, it is important to allow a quantitative assessment of the resulting structures simultaneously. We demonstrate the use of the tool by applying it to two meteorological examples: finding structure definitions for vortex cores and center lines of temporarily evolving tropical cyclones. Ideally, structure definitions should be objective and applicable to as many data sets as possible. However, finding such definitions, e.g., for the common atmospheric structures in meteorology, can only be a long-term goal. The proposed procedure, together with the presented tool, is just a first systematic approach aiming at facilitating this long and arduous way. Keywords: Visual data analysis; Coherent and persistent structures; Atmospheric vortices; Tropical storms;

    Cyanine Dye Coupling Mediates Self-assembly of a pH Sensitive Peptide into Novel 3D Architectures

    Get PDF
    Synthetic multichromophore systems are of great importance in artificial light harvesting devices, organic optoelectronics, tumor imaging and therapy. Here, we introduce a promising strategy for the construction of self-assembled peptide templated dye stacks based on coupling of a de novo designed pH sensitive peptide with a cyanine dye Cy5 at its N-terminus. Microscopic techniques, in particular cryogenic TEM (cryo-TEM) and cryo-electron tomography technique (cryo-ET), reveal two types of highly ordered three-dimensional assembly structures on the micrometer scale. Unbranched compact layered rods are observed at pH 7.4 and two-dimensional membrane-like assemblies at pH 3.4, both species displaying spectral features of H-aggregates. Molecular dynamics simulations reveal that the coupling of Cy5 moieties promotes the formation of both ultrastructures, whereas the protonation states of acidic and basic amino acid side chains dictates their ultimate three-dimensional organization

    Diarrheal-associated gut dysbiosis in cancer and inflammatory bowel disease patients is exacerbated by Clostridioides difficile infection

    Get PDF
    IntroductionLow diversity gut dysbiosis can take different forms depending on the disease context. In this study, we used shotgun metagenomic sequencing and gas chromatography–mass spectrometry (GC-MS) to compared the metagenomic and metabolomic profiles of Clostridioides (Clostridium) difficile diarrheal cancer and inflammatory bowel disease (IBD) patients and defined the additive effect of C. difficile infection (CDI) on intestinal dysbiosis.ResultsThe study cohort consisted of 138 case-mix cancer patients, 43 IBD patients, and 45 healthy control individuals. Thirty-three patients were also infected with C. difficile. In the control group, three well-known enterotypes were identified, while the other groups presented with an additional Escherichia-driven enterotype. Bacterial diversity was significantly lower in all groups than in healthy controls, while the highest level of bacterial species richness was observed in cancer patients. Fifty-six bacterial species had abundance levels that differentiated diarrheal patient groups from the control group. Of these species, 52 and 4 (Bacteroides fragilis, Escherichia coli, Klebsiella pneumoniae, and Ruminococcus gnavus) were under-represented and over-represented, respectively, in all diarrheal patient groups. The relative abundances of propionate and butyrate were significantly lower in fecal samples from IBD and CDI patients than in control samples. Isobutyrate, propanate, and butyrate concentrations were lower in cancer, IBD, and CDI samples, respectively. Glycine and valine amino acids were over- represented in diarrheal patients.ConclusionOur data indicate that different external and internal factors drive comparable profiles of low diversity dysbiosis. While diarrheal-related low diversity dysbiosis may be a consequence of systemic cancer therapy, a similar phenotype is observed in cases of moderate to severe IBD, and in both cases, dysbiosis is exacerbated by incidence of CDI

    SYK inhibition targets acute myeloid leukemia stem cells by blocking their oxidative metabolism

    Get PDF
    Spleen tyrosine kinase (SYK) is an important oncogene and signaling mediator activated by cell surface receptors crucial for acute myeloid leukemia (AML) maintenance and progression. Genetic or pharmacologic inhibition of SYK in AML cells leads to increased differentiation, reduced proliferation, and cellular apoptosis. Herein, we addressed the consequences of SYK inhibition to leukemia stem-cell (LSC) function and assessed SYK-associated pathways in AML cell biology. Using gain-of-function MEK kinase mutant and constitutively active STAT5A, we demonstrate that R406, the active metabolite of a small-molecule SYK inhibitor fostamatinib, induces differentiation and blocks clonogenic potential of AML cells through the MEK/ERK1/2 pathway and STAT5A transcription factor, respectively. Pharmacological inhibition of SYK with R406 reduced LSC compartment defined as CD34+CD38-CD123+ and CD34+CD38-CD25+ in vitro, and decreased viability of LSCs identified by a low abundance of reactive oxygen species. Primary leukemic blasts treated ex vivo with R406 exhibited lower engraftment potential when xenotransplanted to immunodeficient NSG/J mice. Mechanistically, these effects are mediated by disturbed mitochondrial biogenesis and suppression of oxidative metabolism (OXPHOS) in LSCs. These mechanisms appear to be partially dependent on inhibition of STAT5 and its target gene MYC, a well-defined inducer of mitochondrial biogenesis. In addition, inhibition of SYK increases the sensitivity of LSCs to cytarabine (AraC), a standard of AML induction therapy. Taken together, our findings indicate that SYK fosters OXPHOS and participates in metabolic reprogramming of AML LSCs in a mechanism that at least partially involves STAT5, and that SYK inhibition targets LSCs in AML. Since active SYK is expressed in a majority of AML patients and confers inferior prognosis, the combination of SYK inhibitors with standard chemotherapeutics such as AraC constitutes a new therapeutic modality that should be evaluated in future clinical trials

    Characteristics of the gut microbiome in esports players compared with those in physical education students and professional athletes

    Get PDF
    IntroductionEsports is a category of competitive video games that, in many aspects, may be similar to traditional sports; however, the gut microbiota composition of players has not been yet studied.Materials and methodsHere, we investigated the composition and function of the gut microbiota, as well as short chain fatty acids (SCFAs), and amino acids, in a group of 109 well-characterized Polish male esports players. The results were compared with two reference groups: 25 endurance athletes and 36 healthy students of physical education. DNA and metabolites isolated from fecal samples were analyzed using shotgun metagenomic sequencing and mass spectrometry, respectively. Physical activity and nutritional measures were evaluated by questionnaire.ResultsAlthough anthropometric, physical activity and nutritional measures differentiated esports players from students, there were no differences in bacterial diversity, the Bacteroidetes/Firmicutes ratio, the composition of enterotype clusters, metagenome functional content, or SCFA concentrations. However, there were significant differences between esports players and students with respect to nine bacterial species and nine amino acids. By contrast, all of the above-mentioned measures differentiated professional athletes from esports players and students, with 45 bacteria differentiating professional athletes from the former and 31 from the latter. The only species differentiating all three experimental groups was Parabacteroides distasonis, showing the lowest and highest abundance in esports players and athletes, respectively.ConclusionOur study confirms the marked impact of intense exercise training on gut microbial structure and function. Differences in lifestyle and dietary habits between esports players and physical education students appear to not have a major effect on the gut microbiota

    The composition and richness of the gut microbiota differentiate the top Polish endurance athletes from sedentary controls

    No full text
    Background Little data are available on the subject of gut microbiota composition in endurance athletes as well as connections between diet and specific bacteria abundance. However, most studies suggest that athletes’ microbiota undergoes major alterations, which may contribute to increased physical performance. Therefore, we decided to investigate differences in gut microbiota between healthy controls and endurance athletes. Materials and methods Stools samples were collected from 14 marathon runners, 11 cross-country skiers and 46 sedentary healthy controls. The athletes’ diet evaluation was performed with 24-h diet recall, using the Aliant programme. The 16S gene sequencing was performed using the Ion 16S Metagenomics Kit on Ion Torrent PGM sequencer. Taxonomic classification and diversity indices computation was performed with Mothur. Results 20 and 5 taxa differentiated healthy controls from marathon runners and cross-country skiers, respectively. Both groups presented a lowered abundance of major gut microbiota genus, Bacteroidetes and higher abundance of Prevotella. The athletes’ microbiome was also more diverse in cross-country skiers than the one of sedentary controls (Simpson index p-value at 0.025). Thirty-one strong correlations (Spearman’s coefficient > 0.6) were uncovered between bacteria abundance and diet, including inverse correlation of Prevotella with sucrose intake, Phascolarctobacterium with polyunsaturated fatty acids as well as positive correlation of Christensenellaceae with folic acid intake and Agathobacter with fiber amount in diet. Conclusions The excessive training associates with both differences in composition and promotion of higher bacterial diversity. Taxons enriched in athletes are known to participate in fiber fermentation

    Hydrogel Alginate Seed Coating as an Innovative Method for Delivering Nutrients at the Early Stages of Plant Growth

    No full text
    Seed coating containing fertilizer nutrients and plant growth biostimulants is an innovative technique for precision agriculture. Nutrient delivery can also be conducted through multilayer seed coating. For this purpose, sodium alginate with NPK, which was selected in a preliminary selection study, crosslinked with divalent ions (Cu(II), Mn(II), Zn(II)) as a source of fertilizer micronutrients, was used to produce seed coating. The seeds were additionally coated with a solution containing amino acids derived from high-protein material. Amino acids can be obtained by alkaline hydrolysis of mealworm larvae (Gly 71.2 ± 0.6 mM, Glu 55.8 ± 1.3 mM, Pro 48.8 ± 1.5 mM, Ser 31.4 ± 1.5 mM). The formulations were applied in different doses per 100 g of seeds: 35 mL, 70 mL, 105 mL, and 140 mL. SEM-EDX surface analysis showed that 70 mL of formulation/100 g of seeds formed a continuity of coatings but did not result in a uniform distribution of components on the surface. Extraction tests proved simultaneous low leaching of nutrients into water (max. 10%), showing a slow release pattern. There occurred high bioavailability of fertilizer nutrients (even up to 100%). Pot tests on cucumbers (Cornichon de Paris) confirmed the new method’s effectiveness, yielding a 50% higher fresh sprout weight and four times greater root length than uncoated seeds. Seed coating with hydrogel has a high potential for commercial application, stimulating the early growth of plants and thus leading to higher crop yields

    Gene Expression-Based Functional Differences between the Bladder Body and Trigonal Urothelium in Adolescent Female Patients with Micturition Dysfunction

    No full text
    The aim of this study is to determine the molecular differences between the urothelial transcriptomes of the bladder body and trigone. The transcriptomes of the bladder body and trigonal epithelia were analyzed by massive sequencing of total epithelial RNA. The profiles of urothelial and urinal microbiomes were assessed by amplicon sequencing of bacterial 16S rRNA genes in 17 adolescent females with pain and micturition dysfunction and control female subjects. The RNA sequencing identified 10,261 differentially expressed genes (DEGs) in the urothelia of the bladder body and trigone, with the top 1000 DEGs at these locations annotated to 36 and 77 of the Reactome-related pathways in the bladder body and trigone, respectively. These pathways represented 11 categories enriched in the bladder body urothelium, including extracellular matrix organization, the neuronal system, and 15 categories enriched in the trigonal epithelium, including RHO GTPase effectors, cornified envelope formation, and neutrophil degranulation. Five bacterial taxa in urine differed significantly in patients and healthy adolescent controls. The evaluation of their transcriptomes indicated that the bladder body and trigonal urothelia were functionally different tissues. The molecular differences between the body and trigonal urothelia responsible for clinical symptoms in adolescents with bladder pain syndrome/interstitial cystitis remain unclear

    Effect of Saccharomyces boulardii and Mode of Delivery on the Early Development of the Gut Microbial Community in Preterm Infants.

    No full text
    BACKGROUND:Recent advances in culture-independent approaches have enabled insights into the diversity, complexity, and individual variability of gut microbial communities. OBJECTIVES:To examine the effect of oral administration of Saccharomyces (S.) boulardii and mode of delivery on the intestinal microbial community in preterm infants. STUDY DESIGN:Stool samples were collected from preterm newborns randomly divided into two groups: a probiotic-receiving group (n = 18) or a placebo group (n = 21). Samples were collected before probiotic intake (day 0), and after 2 and 6 weeks of supplementation. The composition of colonizing bacteria was assessed by 16S ribosomal RNA (rRNA) gene sequencing of fecal samples using the Ion 16S Metagenomics Kit and the Ion Torrent Personal Genome Machine platform. RESULTS:A total of 11932257 reads were generated, and were clustered into 459, 187, and 176 operational taxonomic units at 0 days, 2 weeks, and 6 weeks, respectively. Of the 17 identified phyla, Firmicutes Actinobacteria, Proteobacteria, and Bacteroidetes were universal. The microbial community differed at day 0 compared with at 2 weeks and 6 weeks. There was a tendency for increased bacterial diversity at 2 weeks and 6 weeks compared with day 0, and infants with a gestational age of 31 weeks or higher presented increased bacterial diversity prior to S. boulardii administration. Firmicutes and Proteobacteria remained stable during the observation period, whereas Actinobacteria and Bacteroidetes increased in abundance, the latter particularly more sharply in vaginally delivered infants. CONCLUSION:While the mode of delivery may influence the development of a microbial community, this study had not enough power to detect statistical differences between cohorts supplemented with probiotics, and in a consequence, to speculate on S. boulardii effect on gut microbiome composition in preterm newborns

    Definition, detection and trackingof persistent structures in atmospheric flows

    No full text
    Long-lived flow patterns in the atmosphere such as weather fronts, mid-latitude blockings or tropical cyclones often induce extreme weather conditions. As a consequence, their description, detection, and tracking has received increasing attention in recent years. Similar objectives also arise in diverse fields such as turbulence and combustion research, image analysis, and medical diagnostics under the headlines of "feature tracking", "coherent structure detection" or "image registration" - to name just a few. A host of different approaches to addressing the underlying, often very similar, tasks have been developed and successfully used. Here, several typical examples of such approaches are summarized, further developed and applied to meteorological data sets. Common abstract operational steps form the basis for a unifying framework for the specification of "persistent structures" involving the definition of the physical state of a system, the features of interest, and means of measuring their persistence. Johannes von Lindheim, Abhishek Harikrishnan, Tom Dörffel, Rupert Klein, Peter Koltai, Natalia Mikula, Annette Müller, Peter Névir, George Pacey, Robert Polzin, Nikki Vercautere
    corecore