11 research outputs found

    The defence architecture of the superficial cells of the oral mucosa

    No full text
    The oral epithelium together with the saliva and its components forms a complex structure which is the first line of defence in the oral cavity. The surface of superficial cells of the oral epithelium contains ridge-like folds, microplicae (MPL), which are typical of the surfaces of areas covered with protective mucus. The role of MPL seen on the upper surface of the oral epithelial cells is still unknown. The salivary mucus gel performs a protective diffusion membrane against harmful substances and this membrane is built up by epithelial cells covered by a highly hydrated and viscous gel, where mucins constitute the scaffold. The interaction between the MPL-structure and the mucins is shown in cornea, so that mucins are expressed on the tips of the MPL of the epithelial cells. We hypothesized that the MPL architecture of oral superficial epithelial cells provides the underlying basis for mucins’s protective function as well as in ocular surface. The salivary mucous barrier is required to protect the superficial cells and the MPL-structure together with membrane anchored mucin binding protein (MBP) forms the ground to this mucous barrier. So, oral mucosal barrier complex (OMBC) contains both the MBP-mucin - complex and the MPL-structure of the superficial cells. In the future, studies of the alterations of the salivary mucins and that of the MPL-structure may yield therapeutic opportunities for burning mouth syndrome and perhaps for mucositis causing by irradiation. Focus on cell surface microplication and mucins in oral mucosal biology and oral mucosal diseases is a promising avenue for future research in several ways

    Irradiation affects the structural, cellular and molecular components of jawbones

    No full text
    Purpose Emerging evidence shows that changes in the bone and its microenvironment following radiotherapy are associated with either an inhibition or a state of low bone formation. Ionizing radiation is damaging to the jawbone as it increases the complication rate due to the development of hypovascular, hypocellular, and hypoxic tissue. This review summarizes and correlates the current knowledge on the effects of irradiation on the bone with an emphasis on jawbone, as these have been a less extensively studied area. Conclusions The stringent regulation of bone formation and bone resorption can be influenced by radiation, causing detrimental effects at structural, cellular, vascular, and molecular levels. It is also associated with a high risk of damage to surrounding healthy tissues and an increased risk of fracture. Technological advances and research on animal models as well as a few human bone tissue studies have provided novel insights into the ways in which bone can be affected by high, low and sublethal dose of radiation. The influence of radiation on bone metabolism, cellular properties, vascularity, collagen, and other factors like inflammation, reactive oxygen species are discussed.Diabetes mellitus: pathophysiological changes and therap

    Microplicae: specialized surface structure of epithelial cells of wet-surfaced oral mucosa

    No full text
    The surface structure of the superficial cells of the oral mucosa is decorated with numerous membrane ridges, termed microplicae (MPLs). The MPL structure is typical of the epithelial surfaces that are covered with protective mucus. Cell membrane MPLs are no longer seen as passive consequences of cellular activity. The interaction between MPLs and the mucins has been demonstrated, however the role of MPL structure seen on the upper surface of the oral epithelial cells is speculative. The cell surface is of potentially great significance, as it harbors many markers for refined prognosis and targets for oral mucosal diseases and cancer therapy. With these aspects in mind, we conducted the present review of the MPL structure and function in order to form the basis for further studies of MPLs of the oral epithelial cells

    Effects of irradiation in the mandibular bone loaded with dental implants. An experimental study with a canine model

    No full text
    © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC.Radiation therapy may compromise the quality of bone around dental implants, and its ability to regenerate, remodel, and revascularize. This study aimed to describe the irradiation effect on the bone microstructure of the mandible using dental implants in a canine model. Five beagle dogs were exposed to 40 Gy fractionated radiation. In total, 20 dental implants were inserted, two in the irradiated and two in the non-irradiated side. The mandible bone blocks were subjected to 3D micro-computed tomography (µCT) imaging, later evaluated histomorphometrically by light microscopy and scanning electron microscopy. Alterations in irradiated bone were observed under µCT imaging showing an increased anisotropy, porosity, and pore volume. Bone surface-to-bone volume decreased. The bone to implant contact index was significantly reduced in the irradiated bone (75.6% ± 5.8%) as compared to the non-irradiated bone (85.1% ± 6.8%). In the irradiated mandible, osteocytes with their filopodial processes, the bone beneath the periosteum, and subperiosteal veins showed structural differences but were not significant, whereas the diameter of Haversian canals were smaller statistical significant as compared to the control side. The study highlights that radiation dosage of fractioned 40 Gy causes alterations in the alveolar bone microstructure with compatible osseointegration and clinically stable dental implants

    Potential role of nuclear magnetic resonance spectroscopy to identify salivary metabolite alterations in patients with head and neck cancer

    No full text
    The analysis of the salivary metabolomic profile may offer an early phase approach to assess the changes associated with a wide range of diseases including head and neck cancer. The aim of the present study was to investigate the potential of nuclear magn16567956800The authors acknowledge the contribution of NMR Metabolomics Laboratory at the University of Eastern Finland (Kuopio, Finland). Funding The present study was supported by the Finnish Funding Agency for Technology and Innovation (Tekes) project ‘Novel spe

    Irradiation Induced Biochemical Changes in Human Mandibular Bone: A Raman Spectroscopic Study

    No full text
    Understanding the biochemical changes in irradiated human mandible after radiotherapy of cancer patients is critical for oral rehabilitation. The underlying mechanism for radiation-associated changes in the bone at the molecular level could lead to implant failure and osteoradionecrosis. The study aimed to assess the chemical composition and bone quality in irradiated human mandibular bone using Raman spectroscopy. A total of 33 bone biopsies from 16 control and 17 irradiated patients were included to quantify different biochemical parameters from the Raman spectra. The differences in bone mineral and matrix band intensities between control and irradiated groups were analyzed using unpaired Student's t-test with statistical significance at p < 0.05. Findings suggest that the intensity of the phosphate band is significantly decreased and the carbonate band is significantly increased in the irradiated group. Further, the mineral crystallinity and carbonate to phosphate ratio are increased. The mineral to matrix ratio is decreased in the irradiated group. Principal component analysis (PCA) based on the local radiation dose and biopsy time interval of irradiated samples did not show any specific classification between irradiation sub-groups. Irradiation disrupted the interaction and bonding between the organic matrix and hydroxyapatite minerals affecting the bone biochemical properties. However, the normal clinical appearance of irradiated bone would have been accompanied by underlying biochemical and microscopical changes which might result in radiation-induced delayed complications
    corecore