3,190 research outputs found
Characteristics of Cherenkov Radiation in Naturally Occuring Ice
We revisit the theory of Cherenkov radiation in uniaxial crystals.
Historically, a number of flawed attempts have been made at explaining this
radiation phenomenon and a consistent error-free description is nowhere
available. We apply our calculation to a large modern day telescope - IceCube.
Being located at the Antarctica, this detector makes use of the naturally
occuring ice as a medium to generate Cherenkov radiation. However, due to the
high pressure at the depth of the detector site, large volumes of hexagonal ice
crystals are formed. We calculate how this affects the Cherenkov radiation
yield and angular dependence. We conclude that the effect is small, at most
about a percent, and would only be relevant in future high precision
instruments like e.g. Precision IceCube Next Generation Upgrade (PINGU). For
radio-Cherenkov experiments which use the presence of a clear Cherenkov cone to
determine the arrival direction, any variation in emission angle will directly
and linearly translate into a change in apparent neutrino direction. In
closing, we also describe a simple experiment to test this formalism, and
calculate the impact of anisotropy on light-yields from lead tungstate crystals
as used, for example, in the CMS calorimeter at the CERN LHC
Effect of early supervised progressive resistance training compared to unsupervised home-based exercise after fast-track total hip replacement applied to patients with preoperative functional limitations. A single-blinded randomised controlled trial
SummaryObjectiveTo examine if 2 weekly sessions of supervised progressive resistance training (PRT) in combination with 5 weekly sessions of unsupervised home-based exercise is more effective than 7 weekly sessions of unsupervised home-based exercise in improving leg-extension power of the operated leg 10 weeks after total hip replacement (THR) in patients with lower pre-operative function.MethodA total of 73 patients scheduled for THR were randomised (1:1) to intervention group (IG, home based exercise 5 days/week and PRT 2 days/week) or control group (CG, home based exercise 7 days/week). The primary endpoint was change in leg extension power at 10 week follow up. Secondary outcomes were isometric hip muscle strength, sit-to-stand test, stair climb test, 20Â m walking speed and patient-reported outcome (HOOS).ResultsSixty-two completed the trial (85%). Leg extension power increased from baseline to the 10 week follow up in both groups; mean [95% CI] IG: 0.29 [0.13; 0.45] and CG: 0.26 [0.10; 0.42] W/kg, with no between-group difference (primary outcome) (PÂ =Â 0.79). Maximal walking speed (PÂ =Â 0.008) and stair climb performance (PÂ =Â 0.04) improved more in the IG compared to CG, no other between-group differences existed.ConclusionsIn this trial, supervised PRT twice a week in addition to 5 weekly sessions of unsupervised exercise for 10 weeks was not superior to 7 weekly sessions of unsupervised home-based exercise for 10 weeks in improving the primary outcome, leg-extension power of the operated leg, at the primary endpoint 10 weeks after surgery in THR patients with lower pre-operative function.Trial registration: NCT01214954
Mutations in the intersubunit bridge regions of 16S rRNA affect decoding and subunitâsubunit interactions on the 70S ribosome
The small and large subunits of the ribosome are held together by a series of bridges, involving RNAâRNA, RNAâprotein and proteinâprotein interactions. Some 12 bridges have been described for the Escherichia coli 70S ribosome. In this work, we have targeted for mutagenesis, some of the 16S rRNA residues involved in the formation of intersubunit bridges B3, B5, B6, B7b and B8. In addition to effects on subunit association, the mutant ribosomes also affect the fidelity of translation; bridges B5, B6 and B8 increase decoding errors during elongation, while disruption of bridges B3 and B7b alters the stringency of start codon selection. Moreover, mutations in the bridge B5, B6 and B8 regions of 16S rRNA also correct the growth and decoding defects associated with alterations in ribosomal protein S12. These results link bridges B5, B6 and B8 with the decoding process and are consistent with the recently described location of translation factor EF-Tu on the ribosome and the proposed involvement of h14 in activating Guanosine-5â˛-triphosphate (GTP) hydrolysis by aminoacyl-tRNAâ˘EF-Tuâ˘GTP. These observations are consistent with a model in which bridges B5, B6 and B8 contribute to the fidelity of translation by modulating GTP hydrolysis by aminoacyl-tRNAâ˘EF-Tuâ˘GTP ternary complexes during the elongation phase of protein synthesis
Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets
In the CERN NA63 collaboration we have addressed the question of the
potential inadequacy of the commonly used Migdal formulation of the
Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20
and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of
LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference
target, Ta. For each target and energy, a comparison between simulated values
based on the LPM suppression of incoherent bremsstrahlung is shown, taking
multi-photon effects into account. For these targets and energies, we find that
Migdal's theoretical formulation is adequate to a precision of better than
about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure
- âŚ