14 research outputs found

    Tau phosphorylation at Alzheimer\u27s disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    Get PDF
    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer\u27s disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains

    Neurocognitive dysfunction and brain FDG-PET/CT findings in HIV-infected hemophilia patients and HIV-infected non-hemophilia patients.

    No full text
    This single-institution cross-sectional study aimed to grasp the prevalence and features of neurocognitive dysfunction in HIV-infected hemophilia patients in Japan. We conducted neuropsychological tests and medical examinations in 56 HIV-infected hemophilia patients who received outpatient treatment at the AIDS Clinical Center, National Center for Global Health and Medicine. A total of 388 HIV-infected non-hemophilia patients who received outpatient treatment at the same institution were included as a control group. To investigate sites responsible for neurocognitive dysfunction in HIV-infected hemophilia patients using brain FDG-PET/CT scans, the accumulation of FDG in each brain region was compared. Approximately 50% of HIV-infected hemophilia patients had neurocognitive dysfunction. The prevalence of asymptomatic neurocognitive impairment was high (34%). Neurocognitive dysfunction was associated with educational level in HIV-infected hemophilia patients. In the symptomatic group, hemophilic arthropathy and history of cerebrovascular disorders were associated with neurocognitive dysfunction. Left temporal lobe function was reduced in the symptomatic group
    corecore