13 research outputs found

    Acute effects of difference in glucose intake on arterial stiffness in healthy subjects

    Get PDF
    Background: Post-prandial hyperglycemia is associated with higher cardiovascular risk, which causes arterial stiffening and impaired function. Although post-prandial increases in blood glucose are proportional to the level of intake, the acute effects of different glucose intakes on arterial stiffness have not been fully characterized. The present study aimed to determine the acute effects of differences in glucose intake on arterial stiffness. Methods: Six healthy middle-aged and elderly individuals (mean age, 60.0 ± 12.1 years) were orally administered 15, 20, and 25 g of glucose on separate days in a randomized, controlled, cross-over fashion. Brachial-ankle pulse wave velocity, heart-brachial pulse wave velocity, cardio-ankle vascular index, brachial and ankle blood pressure, heart rate, and blood glucose and serum insulin concentrations before and 30, 60, and 90 min after glucose ingestion were measured. Results: Compared to baseline, brachial-ankle pulse wave velocity was higher at 30, 60 and 90 min after ingestion of 25 g glucose, and higher at 90 min after ingestion of 20 g glucose, but at no time points after ingestion of 15 g. Cardio-ankle vascular index was higher at 60 min than at baseline after ingestion of 25 g glucose, but not after ingestion of 15 or 20 g. Conclusions: These results suggest that brachial-ankle pulse wave velocity and cardio-ankle vascular index is affected by the quantity of glucose ingested. Proposed presently is that glucose intake should be reduced at each meal to avoid increases in brachial-ankle pulse wave velocity and cardio-ankle vascular index during acute hyperglycemia

    Overexpression of Chitinase 3-Like 1/YKL-40 in Lung-Specific IL-18-Transgenic Mice, Smokers and COPD

    Get PDF
    We analyzed the lung mRNA expression profiles of a murine model of COPD developed using a lung-specific IL-18-transgenic mouse. In this transgenic mouse, the expression of 608 genes was found to vary more than 2-fold in comparison with control WT mice, and was clustered into 4 groups. The expression of 140 genes was constitutively increased at all ages, 215 genes increased gradually with aging, 171 genes decreased gradually with aging, and 82 genes decreased temporarily at 9 weeks of age. Interestingly, the levels of mRNA for the chitinase-related genes chitinase 3-like 1 (Chi3l1), Chi3l3, and acidic mammalian chitinase (AMCase) were significantly higher in the lungs of transgenic mice than in control mice. The level of Chi3l1 protein increased significantly with aging in the lungs and sera of IL-18 transgenic, but not WT mice. Previous studies have suggested Chi3l3 and AMCase are IL-13-driven chitinase-like proteins. However, IL-13 gene deletion did not reduce the level of Chi3l1 protein in the lungs of IL-18 transgenic mice. Based on our murine model gene expression data, we analyzed the protein level of YKL-40, the human homolog of Chi3l1, in sera of smokers and COPD patients. Sixteen COPD patients had undergone high resolution computed tomography (HRCT) examination. Emphysema was assessed by using a density mask with a cutoff of −950 Hounsfield units to calculate the low-attenuation area percentage (LAA%). We observed significantly higher serum levels in samples from 28 smokers and 45 COPD patients compared to 30 non-smokers. In COPD patients, there was a significant negative correlation between serum level of YKL-40 and %FEV1. Moreover, there was a significant positive correlation between the serum levels of YKL-40 and LAA% in COPD patients. Thus our results suggest that chitinase-related genes may play an important role in establishing pulmonary inflammation and emphysematous changes in smokers and COPD patients

    中高年女性における運動前の異なるグリセミック指数の食事摂取が基質代謝及び食欲に与える影響

    Get PDF
    早稲田大学博士(スポーツ科学)早大学位記番号:新9464doctoral thesi

    Powder Characteristics of Granulated Sugar in Japan

    No full text

    Pre-exercise isomaltulose intake affects carbohydrate oxidation reduction during endurance exercise and maximal power output in the subsequent Wingate test

    No full text
    Abstract Background Ingestion of low-glycemic index (GI) isomaltulose (ISO) not only suppresses subsequent carbohydrate (CHO) oxidation but also inversely retains more CHO after prolonged endurance exercise. Therefore, ISO intake may affect anaerobic power output after prolonged endurance exercise. This study aimed to clarify the time course of CHO utilization during endurance exercise after a single intake of ISO or sucrose (SUC) and the anaerobic power output at the end of endurance exercise. Methods After an intake of either ISO or SUC, 13 athletes were kept at rest for 60 min. Thereafter, they performed a 90-min of treadmill running at their individual target level of % V˙O2{\rm{\dot V}}{{\rm{O}}_2} max. During the experimental session, the expired gas was recorded, and the energy expenditure (EE) and CHO oxidation rate were estimated. Immediately after 90 min of running, a 30-s Wingate test was performed, and the maximal anaerobic power output was compared between the ISO and SUC conditions. Results The percentage of CHO-derived EE increased rapidly after CHO intake and then decreased gradually throughout the experiment. The slopes of the regression lines calculated from the time course in the CHO-derived EE were significantly (negatively) larger in the SUC condition (-19.4 ± 9.6 [%/h]) than in the ISO condition (-13.3 ± 7.5 [%/h]). Furthermore, the maximal power output in the Wingate test immediately after the endurance exercise was significantly higher in the ISO condition than in the SUC condition (peak power: 12.0 ± 0.6 vs. 11.5 ± 0.9 [W/kg]). Conclusion Compared with SUC intake, ISO intake does not produce an abrupt decline in the percentage of CHO-derived EE during prolonged endurance exercise; it remains relatively high until the final exercise phase. Additionally, anaerobic power output at the end of the exercise, largely contributed by anaerobic glycolysis, was greater after ISO intake than after SUC intake

    Acute effects of exercise intensity on butyrylcholinesterase and ghrelin in young men: A randomized controlled study

    No full text
    Background/objectives: Butyrylcholinesterase (BChE), a liver-derived enzyme that hydrolyzes acylated ghrelin to des-acylated ghrelin, may trigger a potential mechanism responsible for the acute exercise-induced suppression of acylated ghrelin. However, studies examining the effects of an acute bout of high-intensity exercise on BChE and acylated ghrelin have yielded inconsistent findings. This study aimed to examine the acute effects of exercise intensity on BChE, acylated ghrelin and des-acylated ghrelin concentrations in humans. Methods: Fifteen young men (aged 22.7 ± 1.8 years, mean ± standard deviation) completed three, half-day laboratory-based trials (i.e., high-intensity exercise, low-intensity exercise and control), in a random order. In the exercise trials, the participants ran for 60 min (from 09:30 to 10:30) at a speed eliciting 70 % (high-intensity) or 40 % (low-intensity) of their maximum oxygen uptake and then rested for 90 min. In the control trial, participants sat on a chair for the entire trial (from 09:30 to 12:00). Venous blood samples were collected at 09:30, 10:00, 10:30, 11:00, 11:30 and 12:00. Results: The BChE concentration was not altered over time among the three trials. Total acylated and des-acylated ghrelin area under the curve during the first 60 min (i.e., from 0 min to 60 min) of the main trial were lower in the high-intensity exercise trial than in the control (acylated ghrelin, mean difference: 62.6 pg/mL, p < 0.001; des-acylated ghrelin, mean difference: 31.4 pg/mL, p = 0.035) and the low-intensity exercise trial (acylated ghrelin, mean difference: 87.7 pg/mL, p < 0.001; des-acylated ghrelin, mean difference: 43.0 pg/mL, p = 0.042). Conclusion: The findings suggest that BChE may not be involved in the modulation of ghrelin even though lowered acylated ghrelin concentration was observed after high-intensity exercise
    corecore