56 research outputs found

    Insulin receptor cleavage induced by estrogen impairs insulin signaling

    Get PDF
    Introduction: Soluble insulin receptor (sIR), which is the ectodomain of insulin receptor (IR), is present in human plasma. Plasma sIR levels are positively correlated with blood glucose levels and negatively correlated with insulin sensitivity. An in vitro model of IR cleavage shows that extracellular calpain 2 directly cleaves IR, which generates sIR, and sequential cleavage of the IRβ subunit by γ-secretase impairs insulin signaling in a glucose concentration-dependent manner. Nevertheless, sIR levels vary among subjects with normal glucose levels. Research design and methods: We examined sIR levels of pregnant women throughout gestation. Using an in vitro model, we also investigated the molecular mechanisms of IR cleavage induced by estradiol. Results: In pregnant women, sIR levels were positively correlated with estrogen levels and significantly increased at late pregnancy independent of glucose levels. Using an in vitro model, estrogen elicited IR cleavage and impaired cellular insulin signaling. Estradiol-induced IR cleavage was inhibited by targeting of calpain 2 and γ-secretase. Estrogen exerted these biological effects via G protein-coupled estrogen receptor, and its selective ligand upregulated calpain 2 expression and promoted exosome secretion, which significantly increased extracellular calpain 2. Simultaneous stimulation of estrogen and high glucose levels had a synergic effect on IR cleavage. Metformin prevented calpain 2 release in exosomes and restored insulin signaling impaired by estrogen. Conclusions: Estradiol-induced IR cleavage causes cellular insulin resistance, and its molecular mechanisms are shared with those by high glucose levels. sIR levels at late pregnancy are significantly elevated along with estrogen levels. Therefore, estradiol-induced IR cleavage is preserved in pregnant women and could be part of the etiology of insulin resistance in gestational diabetes mellitus and overt diabetes during pregnancy

    Identification of Genes Associated with Sensitivity to Ultraviolet A (UVA) Irradiation by Transposon Mutagenesis of Vibrio parahaemolyticus

    Get PDF
    Ultraviolet (UV) irradiation is used to disinfect water and food and can be classified as UVA (detected at wavelengths 320–400 nm), UVB (280–320 nm), and UVC (<280 nm). We developed a method for UVA sterilization of equipment with a UVA-light-emitting diode (LED); however, a high rate of fluence was needed to promote pathogen inactivation. The aim of this study was to identify genes associated with UVA sensitivity with the goal of improving UVA-LED-mediated bactericidal activity. We constructed a transposon-mutant library of Vibrio parahaemolyticus and selected six mutants with high sensitivity to UVA irradiation. Genes associated with this phenotype include F-type H+-transporting ATPases (atp), as well as those involved in general secretion (gsp), and ubiquinone and terpenoid-quinone biosynthesis (ubi). Gene complementation resulted in decreased sensitivity to UVA-LED. The atp mutants had lower intracellular adenosine triphosphate (ATP) concentrations than the wild-type treatment, with 20 mM L-serine resulting in elevated ATP concentrations and decreased sensitivity to UVA-LED. The gsp mutants exhibited high levels of extracellular protein transport and the ubi mutants exhibited significantly different intracellular concentrations of ubiquinone-8. Taken together, our results suggest that the protein products of the atp, gsp, and ubi genes may regulate sensitivity to UVA irradiation

    パノビノスタットとプロテアソーム阻害薬は骨髄腫細胞の増殖と生存に必須の転写因子Sp1を相乗的に標的にする

    Get PDF
    Panobinostat, a pan-deacetylase inhibitor, synergistically elicits cytotoxic activity against myeloma (MM) cells in combination with the proteasome inhibitor bortezomib. Because precise mechanisms for panobinostat’s anti-MM action still remain elusive, we aimed to clarify the mechanisms of anti-MM effects of panobinostat and its synergism with proteasome inhibitors. Although the transcription factor Sp1 was overexpressed in MM cells, the Sp1 inhibitor terameprocol induced MM cell death in parallel with reduction of IRF4 and cMyc. Panobinostat induced activation of caspase-8, which was inversely correlated with reduction of Sp1 protein levels in MM cells. The panobinostat-mediated effects were further potentiated to effectively induce MM cell death in combination with bortezomib or carfilzomib even at suboptimal concentrations as a single agent. Addition of the caspase-8 inhibitor z-IETD-FMK abolished the Sp1 reduction not only by panobinostat alone but also by its combination with bortezomib, suggesting caspase-8-mediated Sp1 degradation. The synergistic Sp1 reduction markedly suppressed Sp1-driven prosurvival factors, IRF4 and cMyc. Besides, the combinatory treatment reduced HDAC1, another Sp1 target, in MM cells, which may potentiate HDAC inhibition. Collectively, caspase-8-mediated post-translational Sp1 degradation appears to be among major mechanisms for synergistic anti-MM effects of panobinostat and proteasome inhibitors in combination

    MODULATION OF TRAIL ACTION BY TAK1 INHIBITION

    Get PDF
    Tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) agonists induce tumor-specific apoptosis indicating that they may be an attractive therapeutic strategy against cancers, including multiple myeloma (MM). Osteoclastogenesis is highly induced in MM, which in turn enhances MM growth, thereby forming a vicious cycle between MM tumor expansion and bone destruction. However, the effects of TRAIL on MM-enhanced osteoclastogenesis remain largely unknown. Here, we show that TRAIL induced apoptosis in MM cells, but not in osteoclasts (OCs), and that it rather facilitated receptor activator of NF-kB ligand–induced osteoclastogenesis along with upregulation of cellular FLICE inhibitory protein (c-FLIP). TRAIL did not induce death-inducing signaling complex formation in OCs, but formed secondary complex (complex II) with the phosphorylation of transforming growth factor b–activated kinase-1 (TAK1), and thus activated NF-kB signaling. c-FLIP knockdown abolished complex II formation, thus permitting TRAIL induction of OC cell death. The TAK1 inhibitor LLZ1640-2 abrogated the TRAIL-induced c-FLIP upregulation and NF-kB activation, and triggered TRAIL-induced caspase-8 activation and cell death in OCs. Interestingly, the TRAIL-induced caspase-8 activation caused enzymatic degradation of the transcription factor Sp1 to noticeably reduce c-FLIP expression, which further sensitized OCs to TRAIL-induced apoptosis. Furthermore, the TAK1 inhibition induced antiosteoclastogenic activity by TRAIL even in cocultures with MM cells while potentiating TRAIL’s anti-MM effects. These results demonstrated that osteoclastic lineage cells use TRAIL for their differentiation and activation through tilting caspase-8–dependent apoptosis toward NF-kB activation, and that TAK1 inhibition subverts TRAIL-mediated NF-kB activation to resume TRAIL-induced apoptosis in OCs while further enhancing MM cell death in combination with TRAIL

    A vicious cycle between acid sensing and survival signaling in myeloma cells : acid-induced epigenetic alteration

    Get PDF
    Myeloma (MM) cells and osteoclasts are mutually interacted to enhance MM growth while creating acidic bone lesions. Here, we explored acid sensing of MM cells and its role in MM cell response to acidic conditions. Acidic conditions activated the PI3K-Akt signaling in MM cells while upregulating the pH sensor transient receptor potential cation channel subfamily V member 1 (TRPV1) in a manner inhibitable by PI3K inhibition. The acid-activated PI3K-Akt signaling facilitated the nuclear localization of the transcription factor Sp1 to trigger the expression of its target genes, including TRPV1 and HDAC1. Consistently, histone deacetylation was enhanced in MM cells in acidic conditions, while repressing a wide variety of genes, including DR4. Indeed, acidic conditions deacetylated histone H3K9 in a DR4 gene promoter and curtailed DR4 expression in MM cells. However, inhibition of HDAC as well as either Sp1 or PI3K was able to restore DR4 expression in MM cells suppressed in acidic conditions. These results collectively demonstrate that acid activates the TRPV1-PI3K-Akt-Sp1 signaling in MM cells while inducing HDAC-mediated gene repression, and suggest that a positive feedback loop between acid sensing and the PI3K-Akt signaling is formed in MM cells, leading to MM cell response to acidic bone lesions

    Anti-myeloma Activity by Thiazolidine-2,4-dione compounds

    Get PDF
    Proviral Integrations of Moloney virus 2 (PIM2) kinase is overexpressed in multiple myeloma (MM) cells, and regarded as an important therapeutic target. Here, we aimed to validate the therapeutic efficacy of different types of PIM inhibitors against MM cells for their possible clinical application. Intriguingly, the thiazolidine 2,4 dione family compounds SMI 16a and SMI 4a reduced PIM2 protein levels and impaired MM cell survival preferentially in acidic conditions, in contrast to other types of PIM inhibitors, including AZD1208, CX 6258 and PIM447. SMI 16a also suppressed the drug efflux function of breast cancer resistance protein, minimized the sizes of side populations, and reduced in vitro colony forming capacity and in vivo tumorigenic activity in MM cells, suggesting impairment of their clonogenic capacity. PIM2 is known to be subject to ubiquitination-independent proteasomal degradation. Consistently, the proteasome inhibitors bortezomib and carfilzomib increased PIM2 protein levels in MM cells without affecting its mRNA levels. However, SMI 16a mitigated the PIM2 protein increase and cooperatively enhanced anti MM effects in combination with carfilzomib. Collectively, the thiazolidine 2,4 dione family compounds SMI 16a and SMI 4a uniquely reduce PIM2 protein in MM cells, which may contribute to their profound efficacy in addition to their immediate kinase inhibition. Their combination with proteasome inhibitors is envisioned

    Effective impairment of myeloma cells and their progenitors by hyperthermia

    Get PDF
    Multiple myeloma (MM) remains incurable, and MM-initiating cells or MM progenitors are considered to contribute to disease relapse through their drug-resistant nature. In order to improve the therapeutic efficacy for MM, we recently developed novel superparamagnetic nanoparticles which selectively accumulate in MM tumors and extirpate them by heat generated with magnetic resonance. We here aimed to clarify the therapeutic effects on MM cells and their progenitors by hyperthermia. Heat treatment at 43°C time-dependently induced MM cell death. The treatment upregulated endoplasmic reticulum (ER) stress mediators, ATF4 and CHOP, while reducing the protein levels of Pim-2, IRF4, c-Myc and Mcl-1. Combination with the proteasome inhibitor bortezomib further enhanced ER stress to potentiate MM cell death. The Pim inhibitor SMI-16a also enhanced the reduction of the Pim-2-driven survival factors, IRF4 and c-Myc, in combination with the heat treatment. The heat treatment almost completely eradicated “side population” fractions in RPMI8226 and KMS-11 cells and suppressed their clonogenic capacity as determined by in vitro colony formation and tumorigenic capacity in SCID mice. These results collectively demonstrated that hyperthermia is able to impair clonogenic drug-resistant fractions of MM cells and enhance their susceptibility to chemotherapeutic drugs

    総合科学科におけるキャリア教育を軸としたグローバル人材育成の試み : SGH3年目における1年次生の学年経営実践報告

    Get PDF
    学年経営は日々の指導の積み重ねによって成される。これさえ行えば何もかもうまく行くというような秘策はない。担任副担任でチームを組み、生徒集団を複数の目で見守りながら、授業や行事を展開していく。本年次は本校総合科学科20年余りの歴史が築きあげたキャリア教育を大切にしながら、スーパーグローバルハイスクール(SGH) の目標であるグローバル人材の育成に向けて取り組んできた。本稿ではその1年間の取り組みについて報告する

    Construction status and prospects of the Hyper-Kamiokande project

    Get PDF
    The Hyper-Kamiokande project is a 258-kton Water Cherenkov together with a 1.3-MW high-intensity neutrino beam from the Japan Proton Accelerator Research Complex (J-PARC). The inner detector with 186-kton fiducial volume is viewed by 20-inch photomultiplier tubes (PMTs) and multi-PMT modules, and thereby provides state-of-the-art of Cherenkov ring reconstruction with thresholds in the range of few MeVs. The project is expected to lead to precision neutrino oscillation studies, especially neutrino CP violation, nucleon decay searches, and low energy neutrino astronomy. In 2020, the project was officially approved and construction of the far detector was started at Kamioka. In 2021, the excavation of the access tunnel and initial mass production of the newly developed 20-inch PMTs was also started. In this paper, we present a basic overview of the project and the latest updates on the construction status of the project, which is expected to commence operation in 2027
    corecore