42 research outputs found

    Immunocytochemical Analysis of α-Tubulin Distribution Before and After Rapid Axopodial Contraction in the Centrohelid Raphidocystis contractilis

    Get PDF
    The centrohelid Raphidocystis contractilis is a heliozoan that has many radiating axopodia, each containing a bundle of microtubules. Although the rapid contraction of the axopodia at nearly a video rate (30 frames/s) is induced by mechanical stimuli, the mechanism underlying this phenomenon in R. contractilis has not yet been elucidated. In the present study, we described for the first time an adequate immunocytochemical fixation procedure for R. contractilis and the cellular distribution of α-tubulin before and after rapid axopodial contraction. We developed a flow-through chamber equipped with a micro-syringe pump that allowed the test solution to be injected at a flow rate below the threshold required to induce rapid axopodial contraction. Next, we used this injection method for evaluating the effects of different combinations of two fixatives (paraformaldehyde or glutaraldehyde) and two buffers (phosphate buffer or PHEM) on the morphological structure of the axopodia. A low concentration of glutaraldehyde in PHEM was identified as an adequate fixative for immunocytochemistry. The distribution of α-tubulin before and after rapid axopodial contraction was examined using immunocytochemistry and confocal laser scanning fluorescence microscopy. Positive signals were initially detected along the extended axopodia from the tips to the bases and were distributed in a non-uniform manner within the axopodia. Conversely, after the induction of a rapid axopodial contraction, these positive signals accumulated in the peripheral region of the cell. These results indicated that axopodial microtubules disassemble into fragments and/ or tubulin subunits during rapid axopodial contraction. Therefore, we hypothesize that the mechanism of extremely rapid axopodial contraction accompanied by cytoskeletal microtubule degradation in R. contractilis involves microtubule-severing at multiple sites

    Postnatal lethality and chondrodysplasia in mice lacking both chondroitin sulfate N-acetylgalactosaminyltransferase-1 and -2

    Get PDF
    Chondroitin sulfate (CS) is a sulfated glycosaminoglycan (GAG) chain. In cartilage, CS plays important roles as the main component of the extracellular matrix (ECM), existing as side chains of the major cartilage proteoglycan, aggrecan. Six glycosyltransferases are known to coordinately synthesize the backbone structure of CS; however, their in vivo synthetic mechanism remains unknown. Previous studies have suggested that two glycosyltransferases, Csgalnact1 (t1) and Csgalnact2 (t2), are critical for initiation of CS synthesis in vitro. Indeed, t1 single knockout mice (t1 KO) exhibit slight dwarfism and a reduction in CS content in cartilage compared with wild-type (WT) mice. To reveal the synergetic roles of t1 and t2 in CS synthesis in vivo, we generated systemic single and double knockout (DKO) mice and cartilage-specific t1 and t2 double knockout (Col2-DKO) mice. DKO mice exhibited postnatal lethality, whereas t2 KO mice showed normal size and skeletal development. Col2-DKO mice survived to adulthood and showed severe dwarfism compared with t1 KO mice. Histological analysis of epiphyseal cartilage from Col2-DKO mice revealed disrupted endochondral ossification, characterized by drastic GAG reduction in the ECM. Moreover, DKO cartilage had reduced chondrocyte proliferation and an increased number of apoptotic chondrocytes compared with WT cartilage. Conversely, primary chondrocyte cultures from Col2-DKO knee cartilage had the same proliferation rate as WT chondrocytes and low GAG expression levels, indicating that the chondrocytes themselves had an intact proliferative ability. Quantitative RT-PCR analysis of E18.5 cartilage showed that the expression levels of Col2a1 and Ptch1 transcripts tended to decrease in DKO compared with those in WT mice. The CS content in DKO cartilage was decreased compared with that in t1 KO cartilage but was not completely absent. These results suggest that aberrant ECM caused by CS reduction disrupted endochondral ossification. Overall, we propose that both t1 and t2 are necessary for CS synthesis and normal chondrocyte differentiation but are not sufficient for all CS synthesis in cartilage

    ELISAを用いたCryptosporidium parvumオーシストの生育活性評価法と紫外線による不活化の検討

    Get PDF
    金沢大学理工研究域機械工学系Two ELISA methods were investigated for the quantitative detection of viability and infectivity of Cryptosporidium parvum oocysts. One is to detect the sporozoites attached to the cell surface, and another is to detect the oocysts developing in host cell. It was thought that the former method, named “Fixed-cell” ELISA, could assess the viability of oocysts, and the latter method, named “Living-cell” ELISA, could assess the infectivity of oocysts. In both ELISA systems, the resulting optical density was related to the number of oocysts inoculated. Inactivation of oocyst by ultraviolet (UV) irradiation was evaluated using these two ELISA systems. One-log reduction in infectivity of oocysts was achieved by 10 mW·s·cm-2 of UV irradiation. At this UV dose, no reduction in viability determined by “Fixed-cell” ELISA was observed

    Circadian protection against bacterial skin infection by epidermal CXCL14-mediated innate immunity

    Get PDF
    体内時計は夜間に自然免疫を発動 --皮膚ケモカインによる自然免疫機構--. 京都大学プレスリリース. 2022-06-16.Biological clocks set for skin immunity. 京都大学プレスリリース. 2022-06-21.The epidermis is the outermost layer of the skin and the body’s primary barrier to external pathogens; however, the early epidermal immune response remains to be mechanistically understood. We show that the chemokine CXCL14, produced by epidermal keratinocytes, exhibits robust circadian fluctuations and initiates innate immunity. Clearance of the skin pathogen Staphylococcus aureus in nocturnal mice was associated with CXCL14 expression, which was high during subjective daytime and low at night. In contrast, in marmosets, a diurnal primate, circadian CXCL14 expression was reversed. Rhythmically expressed CXCL14 binds to S. aureus DNA and induces inflammatory cytokine production by activating Toll-like receptor (TLR)9-dependent innate pathways in dendritic cells and macrophages underneath the epidermis. CXCL14 also promoted phagocytosis by macrophages in a TLR9-independent manner. These data indicate that circadian production of the epidermal chemokine CXCL14 rhythmically suppresses skin bacterial proliferation in mammals by activating the innate immune system

    Infection risk in hemodialysis patient

    Get PDF
    Chronic care patients undergoing hemodialysis for treatment of end-stage renal failure experience higher rates of bloodstream-associated infection due to the patients' compromised immune system and management of the bloodstream through catheters. Staphylococcus species are a common cause of hemodialysis catheter-related bloodstream infections. We investigated environmental bacterial contamination of dialysis wards and contamination of hemodialysis devices to determine the source of bacteria for these infections. All bacterial samples were collected by the swab method and the agarose stamp method. And which bacterium were identified by BBL CRYSTAL Kit or 16s rRNA sequences. In our data, bacterial cell number of hemodialysis device was lower than environment of patient surrounds. But Staphylococcus spp. were found predominantly on the hemodialysis device (46.8%), especially on areas frequently touched by healthcare-workers (such as Touch screen). Among Staphylococcus spp., Staphylococcus epidermidis was most frequently observed (42.1% of Staphylococcus spp.), and more surprising, 48.2% of the Staphylococcus spp. indicated high resistance for methicillin. Our finding suggests that hemodialysis device highly contaminated with bloodstream infection associated bacteria. This study can be used as a source to assess the risk of contamination-related infection and to develop the cleaning system for the better prevention for bloodstream infections in patients with hemodialysis

    SARS-CoV-2 disrupts respiratory vascular barriers by suppressing Claudin-5 expression

    Get PDF
    臓器チップ技術を用いて新型コロナウイルスが血管へ侵入するメカニズムを解明 --Claudin-5発現抑制による呼吸器の血管内皮バリア破壊--. 京都大学プレスリリース. 2022-09-22.A study using an organ-on-a-chip reveals a mechanism of SARS-CoV-2 invasion into blood vessels --Disruption of vascular endothelial barrier in respiratory organs by decreasing Claudin-5 expression--. 京都大学プレスリリース. 2022-09-27.In the initial process of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects respiratory epithelial cells and then transfers to other organs the blood vessels. It is believed that SARS-CoV-2 can pass the vascular wall by altering the endothelial barrier using an unknown mechanism. In this study, we investigated the effect of SARS-CoV-2 on the endothelial barrier using an airway-on-a-chip that mimics respiratory organs and found that SARS-CoV-2 produced from infected epithelial cells disrupts the barrier by decreasing Claudin-5 (CLDN5), a tight junction protein, and disrupting vascular endothelial cadherin–mediated adherens junctions. Consistently, the gene and protein expression levels of CLDN5 in the lungs of a patient with COVID-19 were decreased. CLDN5 overexpression or Fluvastatin treatment rescued the SARS-CoV-2–induced respiratory endothelial barrier disruption. We concluded that the down-regulation of CLDN5 expression is a pivotal mechanism for SARS-CoV-2–induced endothelial barrier disruption in respiratory organs and that inducing CLDN5 expression is a therapeutic strategy against COVID-19

    Differences in energy source storage in eye stalks between two species of stalk-eyed flies, Sphyracephala detrahens and Cyrtodiopsis dalmanni

    No full text
    Some diopsid flies have sexually dimorphic eye stalks that are assumed to require considerable nutrition for growth but are advantageous in competition and courtship. According to the handicap theory, the eye span in some dimorphic species serves as a reliable signal of individual quality to an opponent. However, it is not well understood how well eye span represents energy source storage. In this study, we focused on two species: Sphyracephala detrahens, which has weak dimorphism, and Cyrtodiopsis dalmanni, which has moderate dimorphism. We found that the eye stalks of the former species contained more fat bodies than those of the latter species. When the flies were starved, the fat body cells in the eye stalks underwent autophagy. A strong positive correlation was consistently found between eye span and starvation tolerance for S. detrahens, while a weak correlation was found for C. dalmanni. Furthermore, starvation decreased the contest winning rate between S. detrahens pairs with similar eye spans. These findings suggest that the presentation of resource holding potential may be larger than the actual storage ability and that the fidelity of nutritional storage signaling varies; the signal presented by S. detrahens is more reliable than that presented by C. dalmanni
    corecore