10 research outputs found

    Wireless power transfer in magnetic resonance imaging at a higher-order mode of a birdcage coil

    Full text link
    Magnetic resonance imaging (MRI) is a crucial tool for medical visualization. In many cases, performing a scanning procedure requires the use of additional equipment, which can be powered by wires as well as via wireless power transfer (WPT) or wireless energy harvesting. In this Letter, we propose a novel scheme for WPT that uses a higher-order mode of the MRI scanner's birdcage coil for energy transmission. In contrast to the existing WPT solutions, our approach does not require additional transmitting coils. Compared to the energy harvesting, the proposed method allows supplying significantly more power. We perform numerical simulations demonstrating that one can use the fundamental mode of the birdcage coil to perform a scanning procedure while transmitting the energy to the receiver at a higher-order mode without any interference with the scanning signal or violation of safety constraints, as guaranteed by the mode structure of the birdcage. Also, we evaluate the specific absorption rate along with the energy transfer efficiency and verify our numerical model by a direct comparison with an experimental setup featuring a birdcage coil of a 1.5T MRI scanner.Comment: 6 pages, 5 figures + Supplementary Material 10 pages, 7 figure

    Novel D-A-π-A1 Type Organic Sensitizers from 4,7-Dibromobenzo[d][1,2,3]thiadiazole and Indoline Donors for Dye-Sensitized Solar Cells

    Get PDF
    Two novel D-A-π-A1 metal-free organic dyes of the KEA series containing benzo[d][1,2,3]thiadiazole (isoBT) internal acceptor, indoline donors fused with cyclopentane or cyclohexane rings (D), a thiophene as a π-spacer, and a cyanoacrylate as an anchor part were synthesized. Monoarylation of 4,7-dibromobenzo[d][1,2,3]thiadiazole by Suzuki-Miyamura cross-coupling reaction showed that in the case of indoline and carbazole donors, the reaction was non-selective, i.e., two monosubstituted derivatives were isolated in each case, whereas only one mono-isomer was formed with phenyl- and 2-thienylboronic acids. This was explained by the fact that heterocyclic indoline and carbazole fragments are much stronger donor groups compared to thiophene and benzene, as confirmed by cyclic voltammetry measurements and calculation of HOMO energies of indoline, carbazole, thiophene and benzene molecules. The structure of monoaryl(hetaryl) derivatives was strictly proven by NMR spectroscopy and X-ray diffraction. The optical and photovoltaic properties observed for the KEA dyes showed that these compounds are promising for the creation of solar cells. A comparison with symmetrical benzo[c][1,2,3]thiadiazole dyes WS-2 and MAX114 showed that the asymmetric nature of benzo[d][1,2,3]thiadiazole KEA dyes leads to a hypsochromic shift of the ICT band in comparison with the corresponding benzo[c][1,2,5]thiadiazole isomers. KEA dyes have a narrow HOMO-LUMO gap of 1.5–1.6 eV. Amongst these dyes, KEA321 recorded the best power efficiency (PCE), i.e., 5.17%, which is superior to the corresponding symmetrical benzo[c][1,2,3]thiadiazole dyes WS-2 and MAX114 (5.07 and 4.90%)

    Emission Monitoring Mobile Experiment (EMME): An overview and first results of the St. Petersburg megacity campaign 2019

    Get PDF
    Global climate change is one of the most important scientific, societal and economic contemporary challenges. Fundamental understanding of the major processes driving climate change is the key problem which is to be solved not only on a global but also on a regional scale. The accuracy of regional climate modelling depends on a number of factors. One of these factors is the adequate and comprehensive information on the anthropogenic impact which is highest in industrial regions and areas with dense population – modern megacities. Megacities are not only “heat islands”, but also significant sources of emissions of various substances into the atmosphere, including greenhouse and reactive gases. In 2019, the mobile experiment EMME (Emission Monitoring Mobile Experiment) was conducted within the St. Petersburg agglomeration (Russia) aiming to estimate the emission intensity of greenhouse (CO2_{2}, CH4_{4}) nd reactive (CO, NOx_{x}) gases for St. Petersburg, which is the largest northern megacity. St. Petersburg State University (Russia), Karlsruhe Institute of Technology (Germany) and the University of Bremen (Germany) jointly ran this experiment. The core instruments of the campaign were two portable Bruker EM27/SUN Fourier transform infrared (FTIR) spectrometers which were used for ground-based remote sensing measurements of the total column amount of CO2_{2}, CH4_{4} and CO at upwind and downwind locations on opposite sides of the city. The NO2_{2} tropospheric column amount was observed along a circular highway around the city by continuous mobile measurements of scattered solar visible radiation with an OceanOptics HR4000 spectrometer using the differential optical absorption spectroscopy (DOAS) technique. Simultaneously, air samples were collected in air bags for subsequent laboratory analysis. The air samples were taken at the locations of FTIR observations at the ground level and also at altitudes of about 100 m when air bags were lifted by a kite (in case of suitable landscape and favourable wind conditions). The entire campaign consisted of 11 mostly cloudless days of measurements in March–April 2019. Planning of measurements for each day included the determination of optimal location for FTIR spectrometers based on weather forecasts, combined with the numerical modelling of the pollution transport in the megacity area. The real-time corrections of the FTIR operation sites were performed depending on the actual evolution of the megacity NOx_{x} plume as detected by the mobile DOAS observations. The estimates of the St. Petersburg emission intensities for the considered greenhouse and reactive gases were obtained by coupling a box model and the results of the EMME observational campaign using the mass balance approach. The CO2_{2} emission flux for St. Petersburg as an area source was estimated to be 89 ± 28 ktkm2^{-2} yr 2^{-2} , which is 2 times higher than the corresponding value in the EDGAR database. The experiment revealed the CH4_{4} emission flux of 135 ± 68 tkm 2^{-2} yr 1^{-1}, which is about 1 order of magnitude greater than the value reported by the official inventories of St. Petersburg emissions (∼ 25 tkm2^{-2} yr 1^{-1} or 2017). At the same time, for the urban territory of St. Petersburg, both the EMME experiment and the official inventories for 2017 give similar results for the CO anthropogenic flux (251 ± 104 tkm 2^{-2} yr 1^{-1} s. 410 tkm 2^{-2} yr 1^{-1}) nd for the NOx_{x} anthropogenic flux (66 ± 28 tkm2^{-2} yr 1^{-1} vs. 69 tkm 2^{-2} yr 1^{-1})

    Novel D-A-D Fluorescent Dyes Based on 9-(p-Tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole as a Donor Unit for Solution-Processed Organic Light-Emitting-Diodes

    No full text
    New fluorescent D-A-D dyes containing 9-(p-tolyl)-2,3,4,4a,9,9a-hexahydro-1H-carbazole as a donor unit and 2,1,3-benzochalcogenadiazoles as an electron-withdrawing group were synthesized. The photoluminescent and electroluminescent properties of novel dyes for fluorescent OLED application were investigated. It was demonstrated that the replacement of lightweight heteroatoms by heavier ones enables the fine tuning of the maximum emission without significantly reducing the luminescence quantum yield. The maximum quantum yield value of 62.6% for derivatives based on 2,1,3-benzoxadiazole (1a) in cyclohexane was achieved. Two devices with the architecture of glass/ITO/PEDOT-PSS/poly-TPD/EML/TPBi/LiF/Al (EML = emitting layer) were fabricated to check the suitability of the synthesized compounds as a single active emission layer in OLED. These OLEDs exhibited clear red electroluminescence of the dyes with the maximum current efficiency of 0.85 Cd/A
    corecore