94 research outputs found
Ferroelectric thin film acoustic devices with electrical multiband switching ability
Design principles of a new class of microwave thin film bulk acoustic resonators with multiband resonance frequency switching ability are presented. The theory of the excitation of acoustic eigenmodes in multilayer ferroelectric structures is considered, and the principle of selectivity for resonator with an arbitrary number of ferroelectric layers is formulated. A so called âcriterion functionâ is suggested that allows to determine the conditions for effective excitation at one selected resonance mode with suppression of other modes. The proposed theoretical approach is verifiedusing thepreexisting experimental data published elsewhere. Finally, the possible application of the two ferroelectric layers structures for switchable microwave overtone resonators, binary and quadrature phase-shift keying modulators are discussed. These devices could play a pivotal role in the miniaturization of microwave front-end antenna circuits
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
NMR methods to monitor the enzymatic depolymerization of heparin
Heparin and the related glycosaminoglycan, heparan sulfate, are polydisperse linear polysaccharides that mediate numerous biological processes due to their interaction with proteins. Because of the structural complexity and heterogeneity of heparin and heparan sulfate, digestion to produce smaller oligosaccharides is commonly performed prior to separation and analysis. Current techniques used to monitor the extent of heparin depolymerization include UV absorption to follow product formation and size exclusion or strong anion exchange chromatography to monitor the size distribution of the components in the digest solution. In this study, we used 1H nuclear magnetic resonance (NMR) survey spectra and NMR diffusion experiments in conjunction with UV absorption measurements to monitor heparin depolymerization using the enzyme heparinase I. Diffusion NMR does not require the physical separation of the components in the reaction mixture and instead can be used to monitor the reaction solution directly in the NMR tube. Using diffusion NMR, the enzymatic reaction can be stopped at the desired time point, maximizing the abundance of larger oligosaccharides for protein-binding studies or completion of the reaction if the goal of the study is exhaustive digestion for characterization of the disaccharide composition. In this study, porcine intestinal mucosa heparin was depolymerized using the enzyme heparinase I. The unsaturated bond formed by enzymatic cleavage serves as a UV chromophore that can be used to monitor the progress of the depolymerization and for the detection and quantification of oligosaccharides in subsequent separations. The double bond also introduces a unique multiplet with peaks at 5.973, 5.981, 5.990, and 5.998Â ppm in the 1H-NMR spectrum downfield of the anomeric region. This multiplet is produced by the proton of the C-4 double bond of the non-reducing end uronic acid at the cleavage site. Changes in this resonance were used to monitor the progression of the enzymatic digestion and compared to the profile obtained from UV absorbance measurements. In addition, in situ NMR diffusion measurements were explored for their ability to profile the different-sized components generated over the course of the digestion
Observation of an Exotic Baryon in Exclusive Photoproduction from the Deuteron
In an exclusive measurement of the reaction , a
narrow peak that can be attributed to an exotic baryon with strangeness
is seen in the invariant mass spectrum. The peak is at
GeV/c with a measured width of 0.021 GeV/c FWHM, which is largely
determined by experimental mass resolution. The statistical significance of the
peak is . The mass and width of the observed peak are
consistent with recent reports of a narrow baryon by other experimental
groups.Comment: 5 pages, 5 figure
Measurement of Beam-Spin Asymmetries for Deep Inelastic Electroproduction
We report the first evidence for a non-zero beam-spin azimuthal asymmetry in
the electroproduction of positive pions in the deep-inelastic region. Data have
been obtained using a polarized electron beam of 4.3 GeV with the CLAS detector
at the Thomas Jefferson National Accelerator Facility (JLab). The amplitude of
the modulation increases with the momentum of the pion relative to
the virtual photon, , with an average amplitude of for range.Comment: 5 pages, RevTEX4, 3 figures, 2 table
Measurement of the Polarized Structure Function for in the Resonance Region
The polarized longitudinal-transverse structure function
has been measured in the resonance region at and 0.65
GeV. Data for the reaction were taken at Jefferson Lab
with the CEBAF Large Acceptance Spectrometer (CLAS) using longitudinally
polarized electrons at an energy of 1.515 GeV. For the first time a complete
angular distribution was measured, permitting the separation of different
non-resonant amplitudes using a partial wave analysis. Comparison with previous
beam asymmetry measurements at MAMI indicate a deviation from the predicted
dependence of using recent phenomenological
models.Comment: 5 pages, LaTex, 4 eps figures: to be published in PRC/Rapid
Communications. Version 2 has revised Q^2 analysi
First Measurement of Transferred Polarization in the Exclusive e p --> e' K+ Lambda Reaction
The first measurements of the transferred polarization for the exclusive ep
--> e'K+ Lambda reaction have been performed in Hall B at the Thomas Jefferson
National Accelerator Facility using the CLAS spectrometer. A 2.567 GeV electron
beam was used to measure the hyperon polarization over a range of Q2 from 0.3
to 1.5 (GeV/c)2, W from 1.6 to 2.15 GeV, and over the full center-of-mass
angular range of the K+ meson. Comparison with predictions of hadrodynamic
models indicates strong sensitivity to the underlying resonance contributions.
A non-relativistic quark model interpretation of our data suggests that the
s-sbar quark pair is produced with spins predominantly anti-aligned.
Implications for the validity of the widely used 3P0 quark-pair creation
operator are discussed.Comment: 6 pages, 4 figure
Observation of Nuclear Scaling in the Reaction at 1
The ratios of inclusive electron scattering cross sections of He,
C, and Fe to He have been measured for the first time. It is
shown that these ratios are independent of at Q1.4 (GeV/c) for
1.5 where the inclusive cross section depends primarily on the
high-momentum components of the nuclear wave function. The observed scaling
shows that the momentum distributions at high-momenta have the same shape for
all nuclei and differ only by a scale factor. The observed onset of the scaling
at Q1.4 and 1.5 is consistent with the kinematical expectation that
two nucleon short range correlations (SRC) are dominate the nuclear wave
function at 300 MeV/c. The values of these ratios in the scaling
region can be related to the relative probabilities of SRC in nuclei with
A3. Our data demonstrate that for nuclei with A12 these
probabilities are 5-5.5 times larger than in deuterium, while for He it is
larger by a factor of about 3.5.Comment: 11 pages, 10 figure
Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton
The reaction was studied at Jefferson Lab using a
tagged photon beam with an energy range of 3-5.47 GeV. A narrow baryon state
with strangeness S=+1 and mass MeV/c was observed in the
invariant mass spectrum. The peak's width is consistent with the CLAS
resolution (FWHM=26 MeV/c), and its statistical significance is 7.8
1.0 ~. A baryon with positive strangeness has exotic structure and
cannot be described in the framework of the naive constituent quark model. The
mass of the observed state is consistent with the mass predicted by a chiral
soliton model for the baryon. In addition, the invariant mass
distribution was analyzed in the reaction with high
statistics in search of doubly-charged exotic baryon states. No resonance
structures were found in this spectrum.Comment: 5 pages, 5 figures, add reference
- âŠ