5 research outputs found

    Metal hydride hydrogen storage and compression systems for energy storage technologies

    Get PDF
    Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems

    Transverse polarisation measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}}=68.4 GeV with the LHCb detector

    No full text
    A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda}hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}}=68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst) P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \, Furthermore, the results are shown as a function of the Feynman xx variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements.A measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst). P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements

    Transverse polarization measurement of Λ\Lambda hyperons in ppNe collisions at sNN\sqrt{s_{NN}} = 68.4 GeV with the LHCb detector

    No full text
    International audienceA measurement of the transverse polarization of the Λ\Lambda and Λˉ\bar{\Lambda} hyperons in ppNe fixed-target collisions at sNN\sqrt{s_{NN}} = 68.4 GeV is presented using data collected by the LHCb detector. The polarization is studied using the decay Λpπ\Lambda \rightarrow p \pi^- together with its charge conjugated process, the integrated values measured are PΛ=0.029±0.019(stat)±0.012(syst), P_{\Lambda} = 0.029 \pm 0.019 \, (\rm{stat}) \pm 0.012 \, (\rm{syst}) \, , PΛˉ=0.003±0.023(stat)±0.014(syst). P_{\bar{\Lambda}} = 0.003 \pm 0.023 \, (\rm{stat}) \pm 0.014 \,(\rm{syst}) \,. Furthermore, the results are shown as a function of the Feynman~xx~variable, transverse momentum, pseudorapidity and rapidity of the hyperons, and are compared with previous measurements

    Test of lepton flavour universality using B0Dτ+ντB^0 \to D^{*-}\tau^+\nu_{\tau} decays with hadronic τ\tau channels

    No full text
    The branching fraction B(B0Dτ+ντ)\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau) is measured relative to that of the normalisation mode B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ using hadronic τ+π+ππ+(π0)νˉτ\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\bar{\nu}_\tau decays in proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb1^{-1}. The measured ratio is B(B0Dτ+ντ)/B(B0Dπ+ππ+)=1.70±0.100.10+0.11\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau)/\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)= 1.70 \pm 0.10^{+0.11}_{-0.10}, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ and B0Dμ+νμB^0 \to D^{*-} \mu^+\nu_\mu modes, the lepton universality test, R(D)B(B0Dτ+ντ)/B(B0Dμ+νμ)\mathcal{R}(D^{*-}) \equiv \mathcal{B}(B^0 \to D^{*-}\tau^+\nu_\tau)/\mathcal{B}(B^0 \to D^{*-} \mu^+\nu_\mu) is calculated, R(D)=0.247±0.015±0.015±0.012, \mathcal{R}(D^{*-}) = 0.247 \pm 0.015 \pm 0.015 \pm 0.012\, , where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements.The branching fraction B(B0→D*-τ+ντ) is measured relative to that of the normalization mode B0→D*-π+π-π+ using hadronic τ+→π+π-π+(π0)ν¯τ decays in proton-proton collision data at a center-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2  fb-1. The measured ratio is B(B0→D*-τ+ντ)/B(B0→D*-π+π-π+)=1.70±0.10-0.10+0.11, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0→D*-π+π-π+ and B0→D*-μ+νμ modes, the lepton universality test R(D*-)≡B(B0→D*-τ+ντ)/B(B0→D*-μ+νμ) is calculated, R(D*-)=0.247±0.015±0.015±0.012, where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements.The branching fraction B(B0Dτ+ντ)\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau}) is measured relative to that of the normalisation mode B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ using hadronic τ+π+ππ+(π0)νˉτ\tau^+ \to \pi^+\pi^-\pi^+(\pi^0)\bar{\nu}_{\tau} decays in proton-proton collision data at a centre-of-mass energy of 13 TeV collected by the LHCb experiment, corresponding to an integrated luminosity of 2 fb1^{-1}. The measured ratio is B(B0Dτ+ντ)/B(B0Dπ+ππ+)=1.70±0.100.10+0.11\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})/\mathcal{B}(B^0 \to D^{*-}\pi^+\pi^-\pi^+)= 1.70 \pm 0.10^{+0.11}_{-0.10}, where the first uncertainty is statistical and the second is related to systematic effects. Using established branching fractions for the B0Dπ+ππ+B^0 \to D^{*-}\pi^+\pi^-\pi^+ and B0Dμ+νμB^0 \to D^{*-} \mu^+\nu_\mu modes, the lepton universality test, R(D)B(B0Dτ+ντ)/B(B0Dμ+νμ)\mathcal{R}(D^{*-}) \equiv \mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})/\mathcal{B}(B^0 \to D^{*-} \mu^+\nu_\mu) is calculated, R(D)=0.247±0.015±0.015±0.012, \mathcal{R}(D^{*-}) = 0.247 \pm 0.015 \pm 0.015 \pm 0.012\, , where the third uncertainty is due to the uncertainties on the external branching fractions. This result is consistent with the Standard Model prediction and with previous measurements

    Measurement of the Branching Fraction of B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} Decays

    No full text
    International audienceThe ratio of branching fractions between B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} and B+J/ψK+B^{+} \rightarrow J/\psi K^{*+} decays is measured with proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb1^{-1}. The measured value is BB0J/ψπ0BB+J/ψK+=(1.153±0.053±0.048)×102\frac{\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}}}{\mathcal{B}_{B^{+} \rightarrow J/\psi K^{*+}}} = (1.153 \pm 0.053 \pm 0.048 ) \times 10^{-2}, where the first uncertainty is statistical and the second is systematic. The branching fraction for B0J/ψπ0B^{0} \rightarrow J/\psi \pi^{0} decays is determined using the branching fraction of the normalisation channel, resulting in BB0J/ψπ0=(1.670±0.077±0.069±0.095)×105\mathcal{B}_{B^{0} \rightarrow J/\psi \pi^{0}} = (1.670 \pm 0.077 \pm 0.069 \pm 0.095) \times 10^{-5}, where the last uncertainty corresponds to that of the external input. This result is consistent with the current world average value and competitive with the most precise single measurement to date
    corecore