5 research outputs found

    Review of deep learning approaches in solving rock fragmentation problems

    Get PDF
    One of the most significant challenges of the mining industry is resource yield estimation from visual data. An example would be identification of the rock chunk distribution parameters in an open pit. Solution of this task allows one to estimate blasting quality and other parameters of open-pit mining. This task is of the utmost importance, as it is critical to achieving optimal operational efficiency, reducing costs and maximizing profits in the mining industry. The mentioned task is known as rock fragmentation estimation and is typically tackled using computer vision techniques like instance segmentation or semantic segmentation. These problems are often solved using deep learning convolutional neural networks. One of the key requirements for an industrial application is often the need for real-time operation. Fast computation and accurate results are required for practical tasks. Thus, the efficient utilization of computing power to process high-resolution images and large datasets is essential. Our survey is focused on the recent advancements in rock fragmentation, blast quality estimation, particle size distribution estimation and other related tasks. We consider most of the recent results in this field applied to open-pit, conveyor belts and other types of work conditions. Most of the reviewed papers cover the period of 2018-2023. However, the most significant of the older publications are also considered. A review of publications reveals their specificity, promising trends and best practices in this field. To place the rock fragmentation problems in a broader context and propose future research topics, we also discuss state-of-the-art achievements in real-time computer vision and parallel implementations of neural networks

    Passive Fingerprinting of Same-Model Electrical Devices by Current Consumption

    No full text
    One possible device authentication method is based on device fingerprints, such as software- or hardware-based unique characteristics. In this paper, we propose a fingerprinting technique based on passive externally measured information, i.e., current consumption from the electrical network. The key insight is that small hardware discrepancies naturally exist even between same-electrical-circuit devices, making it feasible to identify slight variations in the consumed current under steady-state conditions. An experimental database of current consumption signals of two similar groups containing 20 same-model computer displays was collected. The resulting signals were classified using various state-of-the-art time-series classification (TSC) methods. We successfully identified 40 similar (same-model) electrical devices with about 94% precision, while most errors were concentrated in confusion between a small number of devices. A simplified empirical wavelet transform (EWT) paired with a linear discriminant analysis (LDA) classifier was shown to be the recommended classification method

    Automatic Asbestos Control Using Deep Learning Based Computer Vision System

    No full text
    The paper discusses the results of the research and development of an innovative deep learning-based computer vision system for the fully automatic asbestos content (productivity) estimation in rock chunk (stone) veins in an open pit and within the time comparable with the work of specialists (about 10 min per one open pit processing place). The discussed system is based on the applying of instance and semantic segmentation of artificial neural networks. The Mask R-CNN-based network architecture is applied to the asbestos-containing rock chunks searching images of an open pit. The U-Net-based network architecture is applied to the segmentation of asbestos veins in the images of selected rock chunks. The designed system allows an automatic search and takes images of the asbestos rocks in an open pit in the near-infrared range (NIR) and processes the obtained images. The result of the system work is the average asbestos content (productivity) estimation for each controlled open pit. It is validated to estimate asbestos content as the graduated average ratio of the vein area value to the selected rock chunk area value, both determined by the trained neural network. For both neural network training tasks the training, validation, and test datasets are collected. The designed system demonstrates an error of about 0.4% under different weather conditions in an open pit when the asbestos content is about 1.5–4%. The obtained accuracy is sufficient to use the system as a geological service tool instead of currently applied visual-based estimations

    Advanced Analysis of Electroretinograms Based on Wavelet Scalogram Processing

    No full text
    The electroretinography (ERG) is a diagnostic test that measures the electrical activity of the retina in response to a light stimulus. The current ERG signal analysis uses four components, namely amplitude, and the latency of a-wave and b-wave. Nowadays, the international electrophysiology community established the standard for electroretinography in 2008. However, in terms of signal analysis, there were no major changes. ERG analysis is still based on a four-component evaluation. The article describes the ERG database, including the classification of signals via the advanced analysis of electroretinograms based on wavelet scalogram processing. To implement an extended analysis of the ERG, the parameters extracted from the wavelet scalogram of the signal were obtained using digital image processing and machine learning methods. Specifically, the study focused on the preprocessing of wavelet scalogram as images, and the extraction of connected components and thier evaluation. As a machine learning method, a decision tree was selected as one that incorporated feature selection. The study results show that the proposed algorithm more accurately implements the classification of adult electroretinogram signals by 19%, and pediatric signals by 20%, in comparison with the classical features of ERG. The promising use of ERG is presented using differential diagnostics, which may also be used in preclinical toxicology and experimental modeling. The problem of developing methods for electrophysiological signals analysis in ophthalmology is associated with the complex morphological structures of electrophysiological signal components
    corecore