4,898 research outputs found

    Vulnerability of horticultural crop production to extreme weather events

    Get PDF
    The potential impact of future extreme weather events on horticultural crops was evaluated. A review was carried out of the sensitivities of a representative set of crops to environmental challenges. It confirmed that a range of environmental factors are capable of causing a significant impact on production, either as yield or quality loss. The most important of these were un-seasonal temperature, water shortage or excess,and storms. Future scenarios were produced by the LARS-WG1, a stochastic weather generator linked with UKCIP02 projections of future climate. For the analyses, 150 years of synthetic weather data were generated for baseline, 2020HI and 2050HI scenarios at defined locations. The output from the weather generator was used in case studies, either to estimate the frequency of a defined set of circumstances known to have impact on cropping, or as inputs to models of crop scheduling or pest phenology or survival. The analyses indicated that episodes of summer drought severe enough to interrupt the continuity of supply of salads and other vegetables will increase while the frequency of autumns with sufficient rainfall to restrict potato lifting will decrease. They also indicated that the scheduling of winter cauliflowers for continuity of supply will require the deployment of varieties with different temperature sensitivities from those in use currently. In the pest insect studies, the number of batches of Agrotis segetum (cutworm) larvae surviving to third instar increased with time, as did the potential number of generations of Plutella xylostella (diamond-back moth) in the growing season, across a range of locations. The study demonstrated the utility of high resolution scenarios in predicting the likelihood of specific weather patterns and their potential effect on horticultural production. Several limitations of the current scenarios and biological models were also identified

    Dendrimer Conjugation Enhances Tumor Penetration and Cell Kill of Doxorubicin in 3D Coculture Lung Cancer Models

    Get PDF
    Background: Doxorubicin (DOX) is a potent chemotherapeutic widely used for solid tumors (1). Despite high efficacy in 2D cell culture, DOX efficacy does not translate to in vivo lung cancer models (2). Major side effects such as cardiotoxicity may be alleviated with nano-based drug delivery systems (nanoDDS). However, tumor penetration of DOX and DOX-nanoDDS is largely unknown and is an additional barrier to effective clinical therapy (3). Here we describe a nanoDDS capable of enhancing the penetration of DOX. Methods: DOX was conjugated to generation 4 poly(amido-amine) dendrimers through (GFLG) tumor- liable bond. G4SA-GFLG-DOX was synthesized/characterized. spheroids were formed of (A549) lung adenocarcinoma cells and (3T3) fibroblasts. Spheroids were characterized for ECM components with immunohistochemistry. Confocal microscopy was used to evaluate the penetration, internalization, and colocalization of DOX and G4SA-GFLG-DOX. MTT assay and Caspase 3/7 to assess 2D and 3D cytotoxicity. Flow cytometry to determine cells uptake. Results: DOX conjugation to dendrimer resulted in G4SA-GFLG-DOX with ~5.5 DOX, 10±1 nm hydrodynamic diameter, and a -17±3 mV zeta-potential. Spheroids of (A549:3T3) were ECM- rich, developed ECM containing collagen-I, hyaluronan, laminin, and fibronectin. While DOX and G4SA-GFLG-DOX had similar toxicities in 2D model, G4SA-GFLG-DOX demonstrated a 3.1-fold greater penetration into spheroids compared to DOX and correlated to a greater efficacy as measured by caspase 3/7 activity. Also, flow cytometry showed higher uptake of G4SA- GFLG-DOX in cancer cells compared to fibroblasts. Conclusion: The work demonstrates enhanced penetration of DOX, via dendrimer conjugation, into an ECM- rich 3D lung cancer model. The enhanced penetration of G4SA-GFLG-DOX correlated with greater antitumor efficacy. Acknowledgements: We acknowledge partial financial support from the Center for Pharmaceutical Engineering and Sciences - School of Pharmacy at VCU. This study was supported by VCU Quest for Distinction and NSF (DRM #1508363). Microscopy was performed at the VCU Microscopy Facility, supported, in part, by funding from NIH-NCI Cancer Center Support Grant P30 CA016059. RA would like to acknowledge King Faisal University (KFU) and Saudi Arabian Cultural Mission (SACM) for a scholarship.https://scholarscompass.vcu.edu/gradposters/1091/thumbnail.jp

    Universal Approach to Optimal Photon Storage in Atomic Media

    Full text link
    We present a universal physical picture for describing storage and retrieval of photon wave packets in a Lambda-type atomic medium. This physical picture encompasses a variety of different approaches to pulse storage ranging from adiabatic reduction of the photon group velocity and pulse-propagation control via off-resonant Raman fields to photon-echo based techniques. Furthermore, we derive an optimal control strategy for storage and retrieval of a photon wave packet of any given shape. All these approaches, when optimized, yield identical maximum efficiencies, which only depend on the optical depth of the medium.Comment: 4 pages, 3 figures. V2: major changes in presentation (title, abstract, main text), simplification of derivations, new references. V3: minor changes - final version as published in Phys. Rev. Let

    Long-range magnetic fields in the ground state of the Standard Model plasma

    Get PDF
    In thermal equilibrium the ground state of the plasma of Standard Model particles is determined by temperature and exactly conserved combinations of baryon and lepton numbers. We show that at non-zero values of the global charges a translation invariant and homogeneous state of the plasma becomes unstable and the system transits into a new state, containing a large-scale magnetic field. The origin of this effect is the parity-breaking character of weak interactions and chiral anomaly. This situation can occur in the early Universe and may play an important role in its subsequent evolution.Comment: 6 pages. Comments are welcom

    Experimental and theoretical analysis of the upper critical field in FSF trilayers

    Full text link
    The upper critical magnetic field H_{c2} in thin-film FSF trilayer spin-valve cores is studied experimentally and theoretically in geometries perpendicular and parallel to the heterostructure surface. The series of samples with variable thicknesses of the bottom and of the top Cu_{41}Ni_{59} F-layers are prepared in a single run, utilizing a wedge deposition technique. The critical field H_{c2} is measured in the temperature range 0.480.4-8 K and for magnetic fields up to 9 Tesla. A transition from oscillatory to reentrant behavior of the superconducting transition temperature versus F-layers thickness, induced by an external magnetic field, has been observed for the first time. In order to properly interpret the experimental data, we develop a quasiclassical theory, enabling one to evaluate the temperature dependence of the critical field and the superconducting transition temperature for an arbitrary set of the system parameters. A fairly good agreement between our experimental data and theoretical predictions is demonstrated for all samples, using a single set of fit parameters. This confirms adequacy of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) physics in determining the unusual superconducting properties of the studied Cu_{41}Ni_{59}/Nb/Cu_{41}Ni_{59} spin-valve core trilayers.Comment: 16 pages, 7 figures; published versio

    An analytic model of rotationally inelastic collisions of polar molecules in electric fields

    Full text link
    We present an analytic model of thermal state-to-state rotationally inelastic collisions of polar molecules in electric fields. The model is based on the Fraunhofer scattering of matter waves and requires Legendre moments characterizing the "shape" of the target in the body-fixed frame as its input. The electric field orients the target in the space-fixed frame and thereby effects a striking alteration of the dynamical observables: both the phase and amplitude of the oscillations in the partial differential cross sections undergo characteristic field-dependent changes that transgress into the partial integral cross sections. As the cross sections can be evaluated for a field applied parallel or perpendicular to the relative velocity, the model also offers predictions about steric asymmetry. We exemplify the field-dependent quantum collision dynamics with the behavior of the Ne-OCS(1Σ^{1}\Sigma) and Ar-NO(2Π^2\Pi) systems. A comparison with the close-coupling calculations available for the latter system [Chem. Phys. Lett. \textbf{313}, 491 (1999)] demonstrates the model's ability to qualitatively explain the field dependence of all the scattering features observed

    Hot Settling Accretion Flow onto a Spinning Black Hole

    Full text link
    We study the structure and properties of hot MHD accretion onto a Kerr black hole. In such a system, the hole is magnetically coupled to the inflowing gas and exerts a torque onto the accretion flow. A hot settling flow can form around the hole and transport the angular momentum outward, to the outer edge of the flow. Unlike other hot flows, such as advection- and convection-dominated flows and inflow-outflow solutions (ADAFs, CDAFs, and ADIOS), the properties of the hot settling flow are determined by the spin of the central black hole, but are insensitive to the mass accretion rate. Therefore, it may be possible to identify rapidly spinning BHs simply from their broad-band spectra. Observationally, the hot settling flow around a Kerr hole is somewhat similar to other hot flows in that they all have hard, power-law spectra and relatively low luminosities. Thus, most black hole candidates in the low/hard and, perhaps, intermediate X-ray state may potentially accrete via the hot settling flow. However, a settling flow will be somewhat more luminous than ADAFs/CDAFs/ADIOS, will exhibit high variability in X-rays, and may have relativistic jets. This suggests that galactic microquasars and active galactic nuclei may be powered by hot settling flows. We identify several galactic X-ray sources as the best candidates.Comment: 7 pages, 1 figure. Submitted to Ap

    Quantum limits of super-resolution in reconstruction of optical objects

    Full text link
    We investigate analytically and numerically the role of quantum fluctuations in reconstruction of optical objects from diffraction-limited images. Taking as example of an input object two closely spaced Gaussian peaks we demonstrate that one can improve the resolution in the reconstructed object over the classical Rayleigh limit. We show that the ultimate quantum limit of resolution in such reconstruction procedure is determined not by diffraction but by the signal-to-noise ratio in the input object. We formulate a quantitative measure of super-resolution in terms of the optical point-spread function of the system.Comment: 23 pages, 7 figures. Submitted to Physical Review A e-mail: [email protected]

    Recovery From Monocular Deprivation Using Binocular Deprivation: Experimental Observations and Theoretical Analysis

    Get PDF
    Ocular dominance (OD) plasticity is a robust paradigm for examining the functional consequences of synaptic plasticity. Previous experimental and theoretical results have shown that OD plasticity can be accounted for by known synaptic plasticity mechanisms, using the assumption that deprivation by lid suture eliminates spatial structure in the deprived channel. Here we show that in the mouse, recovery from monocular lid suture can be obtained by subsequent binocular lid suture but not by dark rearing. This poses a significant challenge to previous theoretical results. We therefore performed simulations with a natural input environment appropriate for mouse visual cortex. In contrast to previous work we assume that lid suture causes degradation but not elimination of spatial structure, whereas dark rearing produces elimination of spatial structure. We present experimental evidence that supports this assumption, measuring responses through sutured lids in the mouse. The change in assumptions about the input environment is sufficient to account for new experimental observations, while still accounting for previous experimental results
    corecore