15 research outputs found

    Interpreting 16S metagenomic data without clustering to achieve sub-OTU resolution

    Full text link
    The standard approach to analyzing 16S tag sequence data, which relies on clustering reads by sequence similarity into Operational Taxonomic Units (OTUs), underexploits the accuracy of modern sequencing technology. We present a clustering-free approach to multi-sample Illumina datasets that can identify independent bacterial subpopulations regardless of the similarity of their 16S tag sequences. Using published data from a longitudinal time-series study of human tongue microbiota, we are able to resolve within standard 97% similarity OTUs up to 20 distinct subpopulations, all ecologically distinct but with 16S tags differing by as little as 1 nucleotide (99.2% similarity). A comparative analysis of oral communities of two cohabiting individuals reveals that most such subpopulations are shared between the two communities at 100% sequence identity, and that dynamical similarity between subpopulations in one host is strongly predictive of dynamical similarity between the same subpopulations in the other host. Our method can also be applied to samples collected in cross-sectional studies and can be used with the 454 sequencing platform. We discuss how the sub-OTU resolution of our approach can provide new insight into factors shaping community assembly.Comment: Updated to match the published version. 12 pages, 5 figures + supplement. Significantly revised for clarity, references added, results not change

    Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Get PDF
    Christian R. Voolstra is with King Abdullah University of Science and Technology, Shinichi Sunagawa is with the European Molecular Biology Laboratory, Mikhail V. Matz is with UT Austin, Till Bayer is with King Abdullah University of Science and Technology, Manuel Aranda is with King Abdullah University of Science and Technology, Emmanuel Buschiazzo is with University of California Merced, Michael K. DeSalvo is with University of California San Francisco, Erika Lindquist is with the Department of Energy Joint Genome Institute, Alina M. Szmant is with University of North Carolina Wilmington, Mary Alice Coffroth is with State University of New York at Buffalo, Mónica Medina is with University of California Merced.Background -- Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings -- We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance -- This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.This work was supported by DEB-1054766 to M.V.M. and National Science Foundation grants IOS-0644438 and OCE-0313708 to M.M., and by a Collaborative Travel Fund to C.R.V. made by King Abdullah University of Science and Technology (KAUST). The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    Flexible Security and Search Capability for a Relational Database with Externally Linked Multimedia Data Files

    No full text
    Recently, a prototype relational database system has been developed that has the capability of storing and querying analog and video information for interaction with data analysis applications [8]. The system provides for numerous querying categories via indexed meta-data using pre-filled, drop-own combo boxes. A shortcoming of the design is the growing number of categories that could in time become unmanageable. One purpose of this study was to explore a more flexible design that would reduce the number of categories for storing and querying the database. In this design, the user enters a compound, logical query statement with the desired keywords in addition to using the existing combo boxes. This proved to be a more efficient and flexible strategy for accommodating expanding search categories. Another purpose of this study was to add security features in accessing database information to restrict sharing of information about subject populations. This has become an important requirement in accessing subject information in research studies. To this end we have developed an easily reusable security hierarchy in which individual users and groups of users can be granted rights to objects of the system e.g., database tables or user interface tabs. The permissions granted to a user are dynamically updated by group permissions as the user joins or leaves these groups. The initial implementation of security features has proven to be efficiently handled by the interface. Thus, a prototype for a flexible and secure database querying capability has been implemented that can be scaled to meet the expanding needs of researchers

    Relational Database Linkage of Scientific Applications and Their Data Files

    No full text
    Abstract- Research in computational neuroscience has been following a model-based approach where data is comprised of digitized streams of sampled analog data, images and voice. The data are generally contained in files and specialized programs are used to analyze the data. In this study we developed a prototype system for indexing and retrieving information for use by an application that analyzes data. The data in the files consist of channels derived from analog and event driven sources. It is also linked to video images associated with the data acquisition. In this research, we developed an indexing capability that threads into the data acquisition and analysis programs to give the system a broad data base capability. We designed tables and relations within the database for indexing the files and information contained within the file. The system has the potential of giving us retrieval capabilities that include analog, event, and video data types. I

    Head Stabilization by Vestibulocollic Reflexes During Quadrupedal Locomotion in Monkey

    No full text
    Little is known about the three-dimensional characteristics of vestibulocollic reflexes during natural locomotion. Here we determined how well head stability is maintained by the angular and linear vestibulocollic reflexes (aVCR, lVCR) during quadrupedal locomotion in rhesus and cynomolgus monkeys. Animals walked on a treadmill at velocities of 0.4–1.25 m/s. Head rotations were represented by Euler angles (Fick convention). The head oscillated in yaw and roll at stride frequencies (≈1–2 Hz) and pitched at step frequencies (≈2–4 Hz). Head angular accelerations (100–2,500°/s2) were sufficient to have excited the aVOR to stabilize gaze. Pitch and roll head movements were <7°, peak to peak, and the amplitude was unrelated to stride frequency. Yaw movements were larger due to spontaneous voluntary head shifts and were smaller at higher walking velocities. Head translations were small (≤4 cm). Cynomolgus monkeys positioned their heads more forward in pitch than the rhesus monkeys. None of the animals maintained a forward head fixation point, indicating that the lVCR contributed little to compensatory head movements in these experiments. Significantly, aVCR gains in roll and pitch were close to unity and phases were ≈180° over the full frequency range of natural walking, which is in contrast to previous findings using anesthesia or passive trunk rotation with body restraint. We conclude that the behavioral state associated with active body motion is necessary to maintain head stability in pitch and roll over the full range of stride/step frequencies encountered during walking

    Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation

    Get PDF
    Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance. We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation. TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K. We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision

    Targeting AKT-Dependent Regulation of Antioxidant Defense Sensitizes AKT-E17K Expressing Cancer Cells to Ionizing Radiation

    Get PDF
    Aberrant activation of the phosphatidyl-inositol-3-kinase/protein kinase B (AKT) pathway has clinical relevance to radiation resistance, but the underlying mechanisms are incompletely understood. Protection against reactive oxygen species (ROS) plays an emerging role in the regulation of cell survival upon irradiation. AKT-dependent signaling participates in the regulation of cellular antioxidant defense. Here, we were interested to explore a yet unknown role of aberrant activation of AKT in regulating antioxidant defense in response to IR and associated radiation resistance. We combined genetic and pharmacologic approaches to study how aberrant activation of AKT impacts cell metabolism, antioxidant defense, and radiosensitivity. Therefore, we used TRAMPC1 (TrC1) prostate cancer cells overexpressing the clinically relevant AKT-variant AKT-E17K with increased AKT activity or wildtype AKT (AKT-WT) and analyzed the consequences of direct AKT inhibition (MK2206) and inhibition of AKT-dependent metabolic enzymes on the levels of cellular ROS, antioxidant capacity, metabolic state, short-term and long-term survival without and with irradiation. TrC1 cells expressing the clinically relevant AKT1-E17K variant were characterized by improved antioxidant defense compared to TrC1 AKT-WT cells and this was associated with increased radiation resistance. The underlying mechanisms involved AKT-dependent direct and indirect regulation of cellular levels of reduced glutathione (GSH). Pharmacologic inhibition of specific AKT-dependent metabolic enzymes supporting defense against oxidative stress, e.g., inhibition of glutathione synthase and glutathione reductase, improved eradication of clonogenic tumor cells, particularly of TrC1 cells overexpressing AKT-E17K. We conclude that improved capacity of TrC1 AKT-E17K cells to balance antioxidant defense with provision of energy and other metabolites upon irradiation compared to TrC1 AKT-WT cells contributes to their increased radiation resistance. Our findings on the importance of glutathione de novo synthesis and glutathione regeneration for radiation resistance of TrC1 AKT-E17K cells offer novel perspectives for improving radiosensitivity in cancer cells with aberrant AKT activity by combining IR with inhibitors targeting AKT-dependent regulation of GSH provision
    corecore