134 research outputs found

    Field Effect Transistors for Terahertz Detection: Physics and First Imaging Applications

    Full text link
    Resonant frequencies of the two-dimensional plasma in FETs increase with the reduction of the channel dimensions and can reach the THz range for sub-micron gate lengths. Nonlinear properties of the electron plasma in the transistor channel can be used for the detection and mixing of THz frequencies. At cryogenic temperatures resonant and gate voltage tunable detection related to plasma waves resonances, is observed. At room temperature, when plasma oscillations are overdamped, the FET can operate as an efficient broadband THz detector. We present the main theoretical and experimental results on THz detection by FETs in the context of their possible application for THz imaging.Comment: 22 pages, 12 figures, review pape

    Extensive necrosis of visceral melanoma metastases after immunotherapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prognosis for metastatic melanoma remains poor even with traditional decarbazine or interferon therapy. 5-year survival is markedly higher amongst patients undergoing metastatectomy. Unfortunately not all are suitable for metastatectomy. Alternative agents for systemic therapy have, to date, offered no greater rates of survival beyond traditional therapy. A toll-like receptor 9 agonist, PF-3512676 (formerly known as CPG 7909) is currently being evaluated for its potential.</p> <p>Case presentation</p> <p>We present the case of a 54-year-old Caucasian male with completely resected metastatic cutaneous melanoma after immunotherapy. The patient initially progressed during adjuvant high-dose interferon, with metastases to the liver, spleen, and pelvic lymph nodes. During an 18-month treatment period with PF-3512676 (formerly known as CPG 7909), a synthetic cytosine-phosphorothioate-guanine rich oligodeoxynucleotide, slow radiologic disease progression was demonstrated at the original disease sites. Subsequent excision of splenic and pelvic nodal metastases was performed, followed by resection of the liver metastases. Histologic examination of both hepatic and splenic melanoma metastases showed extensive necrosis. Subsequent disease-free status was demonstrated by serial positron emission tomography (PET).</p> <p>Conclusion</p> <p>Existing evidence from phase I/II trials suggests systemic treatment with PF-3512676 is capable of provoking a strong tumor-specific immune response and may account for the prolonged tumor control in this instance.</p

    Dermatofibrosarcoma protuberans treated by micrographic surgery

    Get PDF
    Dermatofibrosarcoma protuberans is an uncommon cutaneous tumour which rarely metastasises. However, local recurrence following apparently adequate surgical excision is well recognised, presumably as a result of sub-clinical contiguous growth, for which micrographically controlled excision would be a logical treatment. A retrospective study of all patients treated by micrographic surgery, from April 1995–March 2000, at a tertiary skin oncology centre. Twenty-one patients (11 males), age 14 to 71 years with dermatofibrosarcoma protuberans on the trunk (10 patients), groin (four), head and neck (four), and limbs (three) were treated. In 15 patients one micrographic layer cleared the tumour, and four were cleared with two layers. For one patient the second stage was completed by conventional excision guided by positive margins. Another patient with a multiply recurrent perineal dermatofibrosarcoma protuberans, not cleared in one area after two layers, died from a pulmonary embolus before total clearance could be achieved. There was no correlation between tumour size and lateral excision margin. No recurrence was observed during the follow-up, from 21 to 80 months, median 47 months. The study provides further support for micrographic surgery as the treatment of choice for dermatofibrosarcoma protuberans

    In Vivo Isolation and Characterization of Stem Cells with Diverse Phenotypes Using Growth Factor Impregnated Biomatrices

    Get PDF
    BACKGROUND: The stimulation to differentiate into specific cell types for somatic stem cells is largely due to a series of internal and external signals coming from the microenvironment that surrounds the stem cell. Even though intensive research has been made, the basic mechanisms of plasticity and/or the molecules regulating stem cells proliferation and differentiation are not completely determined. Potential answers concerning the problems could be derived from the studies of stem cells in culture. METHODOLOGY/PRINCIPLE FINDINGS: We combine a new procedure (using the matrigel biopolymer supplemented with a selected cytokine/growth factor) with classic techniques such as light, confocal and electron microscopy, immunohistochemistry and cell culture, to perform an analysis on stem cells involved in the leech (Hirudo medicinalis) repair tissues. The leech has a relative anatomical simplicity and is a reliable model for studying a variety of basic events, such as tissue repair, which has a striking similarity with vertebrate responses. Our data demonstrate that the injection of an appropriate combination of the matrigel biopolymer supplemented with a selected cytokine/growth factor in the leech Hirudo medicinalis is a remarkably effective tool for isolating a specific cell population in vivo. A comparative analysis of biopolymer in vivo sorted stem cells indicates that VEGF recruited cells of a hematopoietic/endothelial phenotype whereas MCP-1/CCL2 isolated cells that were of an early myeloid lineage. CONCLUSION: Our paper describes, for the first time, a method allowing not only the isolation of a specific cell population in relation to the cytokine utilized but also the possibility to culture a precise cell type whose isolation is otherwise quite difficult. This approach could be broadly applied to isolate stem cells of diverse origins based on the recruitment stimuli employed

    The Death Effector Domains of Caspase-8 Induce Terminal Differentiation

    Get PDF
    The differentiation and senescence programs of metazoans play key roles in regulating normal development and preventing aberrant cell proliferation, such as cancer. These programs are intimately associated with both the mitotic and apoptotic pathways. Caspase-8 is an apical apoptotic initiator that has recently been appreciated to coordinate non-apoptotic roles in the cell. Most of these functions are attributed to the catalytic domain, however, the amino-terminal death effector domains (DED)s, which belong to the death domain superfamily of proteins, can also play key roles during development. Here we describe a novel role for caspase-8 DEDs in regulating cell differentiation and senescence. Caspase-8 DEDs accumulate during terminal differentiation and senescence of epithelial, endothelial and myeloid cells; genetic deletion or shRNA suppression of caspase-8 disrupts cell differentiation, while re-expression of DEDs rescues this phenotype. Among caspase-8 deficient neuroblastoma cells, DED expression attenuated tumor growth in vivo and proliferation in vitro via disruption of mitosis and cytokinesis, resulting in upregulation of p53 and induction of differentiation markers. These events occur independent of caspase-8 catalytic activity, but require a critical lysine (K156) in a microtubule-binding motif in the second DED domain. The results demonstrate a new function for the DEDs of caspase-8, and describe an unexpected mechanism that contributes to cell differentiation and senescence

    S100A7-Downregulation Inhibits Epidermal Growth Factor-Induced Signaling in Breast Cancer Cells and Blocks Osteoclast Formation

    Get PDF
    S100A7 is a small calcium binding protein, which has been shown to be differentially expressed in psoriatic skin lesions, as well as in squamous cell tumors of the skin, lung and breast. Although its expression has been correlated to HER+ high-grade tumors and to a high risk of progression, the molecular mechanisms of these S100A7-mediated tumorigenic effects are not well known. Here, we showed for the first time that epidermal growth factor (EGF) induces S100A7 expression in both MCF-7 and MDA-MB-468 cell lines. We also observed a decrease in EGF-directed migration in shRNA-downregulated MDA-MB-468 cell lines. Furthermore, our signaling studies revealed that EGF induced simultaneous EGF receptor phosphorylation at Tyr1173 and HER2 phosphorylation at Tyr1248 in S100A7-downregulated cell lines as compared to the vector-transfected controls. In addition, reduced phosphorylation of Src at tyrosine 416 and p-SHP2 at tyrosine 542 was observed in these downregulated cell lines. Further studies revealed that S100A7-downregulated cells had reduced angiogenesis in vivo based on matrigel plug assays. Our results also showed decreased tumor-induced osteoclastic resorption in an intra-tibial bone injection model involving SCID mice. S100A7-downregulated cells had decreased osteoclast number and size as compared to the vector controls, and this decrease was associated with variations in IL-8 expression in in vitro cell cultures. This is a novel report on the role of S100A7 in EGF-induced signaling in breast cancer cells and in osteoclast formation

    Androgen Receptor Drives Cellular Senescence

    Get PDF
    The accepted androgen receptor (AR) role is to promote proliferation and survival of prostate epithelium and thus prostate cancer progression. While growth-inhibitory, tumor-suppressive AR effects have also been documented, the underlying mechanisms are poorly understood. Here, we for the first time link AR anti-cancer action with cell senescence in vitro and in vivo. First, AR-driven senescence was p53-independent. Instead, AR induced p21, which subsequently reduced ΔN isoform of p63. Second, AR activation increased reactive oxygen species (ROS) and thereby suppressed Rb phosphorylation. Both pathways were critical for senescence as was proven by p21 and Rb knock-down and by quenching ROS with N-Acetyl cysteine and p63 silencing also mimicked AR-induced senescence. The two pathways engaged in a cross-talk, likely via PML tumor suppressor, whose localization to senescence-associated chromatin foci was increased by AR activation. All these pathways contributed to growth arrest, which resolved in senescence due to concomitant lack of p53 and high mTOR activity. This is the first demonstration of senescence response caused by a nuclear hormone receptor
    corecore