124 research outputs found

    Orchid fleck dichorhavirus movement protein shows RNA silencing suppressor activity.

    Full text link
    [EN] To counteract RNA interference-mediated antiviral defence, virus genomes evolved to express proteins that inhibit this plant defence mechanism. Using six independent biological approaches, we show that orchid fleck dichorhavirus citrus strain (OFV-citrus) movement protein (MP) may act as a viral suppressor of RNA silencing (VSR). By using the alfalfa mosaic virus (AMV) RNA 3 expression vector, it was observed that the MP triggered necrosis response in transgenic tobacco leaves and increased the viral RNA (vRNA) accumulation. The use of the potato virus X (PVX) expression system revealed that the cis expression of MP increased both the severity of the PVX infection and the accumulation of PVX RNAs, further supporting that MP could act as an RNA silencing suppressor (RSS). From the analysis of the RSS-defective turnip crinkle virus (TCV), we do not find local RSS activity for MP, suggesting a link between MP suppressor activity and the prevention of systemic silencing. In the analysis of local suppressive activity using the GFP-based agroinfiltration assay in Nicotiana benthamiana (16 c line), we do not identify local RSS activity for the five OFV RNA1-encoded proteins. However, when evaluating the small interfering RNA (siRNA) accumulation, we find that the expression of MP significantly reduces the accumulation of GFP-derived siRNA. Finally, we examine whether the MP can prevent systemic silencing in 16c plants. Our findings show that MP inhibits the long-distance spread of RNA silencing, but does not affect the short-distance spread. Together, our findings indicate that MP is part of OFV's counter-defence mechanism, acting mainly in the prevention of systemic long-distance silencing. This work presents the first report of a VSR for a member of the genus Dichorhavirus.This work was supported by grant PID2020-115571RB-100 from the Spanish MCIN/AEI/10.13039/501100011033 granting agency and Fondo Europeo de Desarrollo Regional (FEDER), and by the company INVESTIR IMOVEIS LDTA from Brasilia, Brazil.Oliveira Leastro, M.; Pallás Benet, V.; Sánchez-Navarro, JÁ. (2022). Orchid fleck dichorhavirus movement protein shows RNA silencing suppressor activity. Journal of General Virology. 103(11):1-14. https://doi.org/10.1099/jgv.0.0018051141031

    Posicionamiento de las revistas científicas de la salud en Cuba según el índice H5 obtenido del Google Scholar Metrics

    Get PDF
    Fundamento: el proceso de evaluación de las revistas es, sin duda, un proceso continuo que está determinado por la calidad de los artículos científicos y el reconocimiento de los autores a las revistas más citadas en el ámbito de la ciencia.Objetivo: describir cuál es el posicionamiento de las revistas científicas de la salud en Cuba según el índice H5. Métodos: estudio bibliométrico que tomó como muestra la totalidad de las revistas científicas de las Ciencias Médicas de Cuba que están localizadas en la Biblioteca Virtual de Salud. Para el cálculo del posicionamiento se utilizó el valor del índice H5 y la mediana de este índice, ambas variables se obtuvieron del Google Scholar Metrics. Resultados: el 82, 7 % de las revistas médicas cubanas tienen un índice H5 registrado en Google Scholar Metrics. El 72 % se encuentran indexadas en SciELO Cuba. La media de índice H5 de las revistas cubanas de la salud es de 6,88 y la mediana de 6,00; para las indexadas en SciELO Cuba es de 7, 60. El índice H5 de las revistas editadas por ECIMED es de 8,69; con diferencias significativas para el resto de las editoras del país. Entre las primeras 20 revistas médicas cubanas por el índice H5 de Google Scholar Metrics, solo siete no son editadas por ECIMED. Conclusiones: la evaluación de las revistas nacionales por el índice H5 es de vital importancia, aun aceptando las debilidades de este, ya que la mayoría de las mismas no están incluidas en bases de datos como SCOPUS y WOS.</p

    The functional analysis of distinct tospovirus movement proteins (NSM) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species

    Full text link
    [EN] The lack of infectious tospovirus clones to address reverse genetic experiments has compromised the functional analysis of viral proteins. In the present study we have performed a functional analysis of the movement proteins (NSM) of four tospovirus species Bean necrotic mosaic virus (BeNMV), Chrysanthemum stem necrosis virus (CSNV), Tomato chlorotic spot virus (TCSV) and Tomato spotted wilt virus (TSWV), which differ biologically and molecularly, by using the Alfalfa mosaic virus (AMV) model system. All NSM proteins were competent to: i) support the cell-to-cell and systemic transport of AMV, ii) generate tubular structures on infected protoplast and iii) transport only virus particles. However, the NSM of BeNMV (one of the most phylogenetically distant species) was very inefficient to support the systemic transport. Deletion assays revealed that the C-terminal region of the BeNMV NSM, but not that of the CSNV, TCSV and TSWV NSM proteins, was dispensable for cell-to-cell transport, and that all the non-functional C-terminal NSM mutants were unable to generate tubular structures. Bimolecular fluorescence complementation analysis revealed that the C-terminus of the BeNMV NSM was not required for the interaction with the cognate nucleocapsid protein, showing a different protein organization when compared with other movement proteins of the `30K family¿. Overall, our results revealed clearly differences in functional aspects among movement proteins from divergent tospovirus species that have a distinct biological behavior.We thank L. Corachan for her excellent technical assistance. This work was supported by grant BIO2014-54862-R from the Spanish Direccion General de Investigacion Cientifica y Tecnica (DGICYT), the Prometeo Program GV2014/010 from the Generalitat Valenciana, CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico), Capes (Conselho de Aperfeicoamento de Pessoal de Nivel Superior) and FAP-DF (Fundacao de Apoio a Pesquisa do Distrito Federal)Leastro, MO.; Pallás Benet, V.; Resende, RO.; Sanchez Navarro, JA. (2017). The functional analysis of distinct tospovirus movement proteins (NSM) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Research. 227:57-68. https://doi.org/10.1016/j.virusres.2016.09.023S576822

    Membrane Association and Topology of Citrus Leprosis Virus C2 Movement and Capsid Proteins

    Full text link
    [EN] Although citrus leprosis disease has been known for more than a hundred years, one of its causal agents, citrus leprosis virus C2 (CiLV-C2), is poorly characterized. This study described the association of CiLV-C2 movement protein (MP) and capsid protein (p29) with biological membranes. Our findings obtained by computer predictions, chemical treatments after membrane fractionation, and biomolecular fluorescence complementation assays revealed that p29 is peripherally associated, while the MP is integrally bound to the cell membranes. Topological analyses revealed that both the p29 and MP expose their N- and C-termini to the cell cytoplasmic compartment. The implications of these results in the intracellular movement of the virus were discussed.This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), proc. 2014/0845-9, 2017/50222-0, 2015/10249-1 and 2017/19898-8. This work was also supported by grant BIO2017-88321-R from the Spanish Agencia Estatal de Investigacion (AEI) and Fondo Europeo de Desarrollo Regional (FEDER), and the Prometeo Program GV2015/010 from the Generalitat Valenciana.Oliveira Leastro, M.; Freitas-Astua, J.; Watanabe Kitajima, E.; Pallás Benet, V.; Sanchez Navarro, JA. (2021). Membrane Association and Topology of Citrus Leprosis Virus C2 Movement and Capsid Proteins. Microorganisms. 9(2):1-9. https://doi.org/10.3390/microorganisms9020418199

    La gestión del desarrollo, las entidades de ciencia y los sistemas locales de innovación

    Get PDF
    Se presenta un análisis sobre la relación necesaria a lograr entre los elementos: gestión del desarrollo-entidades de ciencia- sistemas locales de innovación, que se realiza en la provincia de Cienfuegos, Cuba (estudio de caso), con el objetivo de elaborar un programa de acción que asegure la articulación entre la gestión del desarrollo, las entidades de ciencia y los sistemas locales de innovación como un proceso de mejora continua, acompañado de un sistema de indicadores que permita evaluar el desempeño de la entidades de ciencia y elevar la efectividad, eficiencia y eficacia del mismo en función del desarrollo local. Se utilizó como método de investigación la consulta a expertos, a partir de cuyos resultados se definen los aspectos a tomar en consideración para dicho programa, en correspondencia con la aptitud que requieren expresar las entidades de ciencia para poder integrar las dimensiones ciencia, tecnología, innovación y medioambiente de forma equilibrada a través de las interfases. La evaluación del programa se realizó a nivel teórico y práctico. Como conclusión fundamental se derivó que la integración de la gestión de la ciencia, la tecnología, la innovación y el medioambiente a través de las entidades de ciencia, en función del desarrollo, articuladas por los sistemas locales de innovación, requiere de una adecuación de sus acciones para asegurar efectividad, eficiencia y eficacia en su desempeño

    Obesidad abdominal, parámetro antropométrico predictivo de alteraciones del metabolismo.

    Get PDF
    Fundamento: La medida del perímetro de la cintura como valoración indirecta de obesidad abdominal se presenta como un elemento esencial en la valoración clínica de la obesidad. El vínculo entre obesidad abdominal e insulinoresistencia se propone como el eje central de la fisiopatología del síndrome metabólico y sus complicaciones. Objetivo: Determinar si los individuos con obesidad abdominal presentan cambios relacionados con los factores que forman parte del síndrome metabólico superiores a los observados en individuos sin obesidad abdominal. Métodos: Se realizó un estudio analítico comparativo con diseño de casos y controles con dos grupos, organizados a partir de una muestra de 98 personas de ambos sexos extraída al azar del universo constituido por una población de 510 trabajadores de la Universidad de Ciencias Médicas de Cienfuegos, de septiembre a diciembre de 2005. A todos se le realizaron mediciones de la presión arterial, colesterol, HDL colesterol, glucemia en ayunas y triglicéridos. Resultados: El 30,6 % de los individuos presentó obesidad abdominal, predominando esta por encima de los 40 años y en féminas (83,3 %). El 53,3 %.de los obesos fueron hipertensos, igual porcentaje tuvo bajos valores de HDL y el 16,7 % mostró alteración de la glucemia. Conclusiones: La obesidad abdominal constituye un problema de salud en la población estudiada, incrementándose con la edad. Los individuos que presentan obesidad abdominal tienen un riesgo mayor de presentar alteraciones metabólicas, tales como bajos niveles de HDL colesterol, altos valores de triacilglicéridos y de colesterol total, así como alteraciones de la glucemia e hipertensió

    La integración de la ciencia, los sistemas locales de innovación y la gestión local de calidad de vida

    Get PDF
    La investigación desarrollada, de tipo explicativa, tiene como objetivo analizar los resultados de asumir la integración de la ciencia como mecanismo de trabajo en la gestión de la calidad de vida en el municipio de Cumanayagua de la provincia de Cienfuegos. Como procedimiento metodológico se utilizó el método de expertos Delphi, la aplicación de los indicadores derivados del Programa Ramal del Ministerio de Educación Superior para evaluar la gestión universitaria del conocimiento y la innovación, así como la correlación de variables, unido a la revisión documental de la localidad. Para el análisis de la información se aplicaron métodos de la estadística multivariada, lo que permitió valorar la significación de la gestión local del desarrollo mediante el comportamiento de los sectores o campos resultantes de dicho análisis, los cuales se correlacionaron con la expresión concreta de la gestión de proyectos dirigidos a una mejor calidad de vida, todo lo cual posibilitó corroborar que la integración de la gestión de las dimensiones ciencia, tecnología, innovación y medioambiente impulsada por el sistema de innovación local, facilita a su vez, la gestión de la calidad de vida y con ello el desempeño del gobierno local

    Spontaneous Mutation in the Movement Protein of Citrus Leprosis Virus C2, in a Heterologous Virus Infection Context, Increases Cell-to-Cell Transport and Generates Fitness Advantage

    Full text link
    [EN] Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), grant numbers 2014/0845-9, 2017/50222-0, 2015/10249-1, 2017/19898-8 and by the Spanish Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER), grant number PID2020-115571RB-100.Oliveira Leastro, M.; Villar-Álvarez, D.; Freitas-Astúa, J.; Watanabe Kitajima, E.; Pallás Benet, V.; Sanchez Navarro, JA. (2021). Spontaneous Mutation in the Movement Protein of Citrus Leprosis Virus C2, in a Heterologous Virus Infection Context, Increases Cell-to-Cell Transport and Generates Fitness Advantage. Viruses. 13(12):1-16. https://doi.org/10.3390/v13122498S116131

    Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity

    Full text link
    [EN] Citrus leprosis virus C (CiLV-C) belongs to the genusCilevirus, familyKitaviridae, and is considered the most devastating virus infecting citrus in Brazil, being the main viral pathogen responsible for citrus leprosis (CL), a severe disease that affects citrus orchards in Latin America. Here, proteins encoded by CiLV-C genomic RNA 1 and 2 were screened for potential RNA silencing suppressor (RSS) activity by five methods. Using the GFP-based reporter agroinfiltration assay, we have not found potential local suppressor activity for the five CiLV-C encoded proteins. However, when RSS activity was evaluated using the alfalfa mosaic virus (AMV) system, we found that the p29, p15, and p61 CiLV-C proteins triggered necrosis response and increased the AMV RNA 3 accumulation, suggesting a suppressive functionality. From the analysis of small interfering RNAs (siRNAs) accumulation, we observed that the ectopic expression of the p29, p15, and p61 reduced significantly the accumulation of GFP derived siRNAs. The use of the RSS defective turnip crinkle virus (TCV) system revealed that only thetrans-expression of the p15 protein restored the cell-to-cell viral movement. Finally, the potato virus X (PVX) system revealed that the expression of p29, p15, and p61 increased the PVX RNA accumulation; in addition, the p29 and p15 enhanced the pathogenicity of PVX resulting in the death of tobacco plants. Furthermore, PVX-p61 infection resulted in a hypersensitive response (HR), suggesting that p61 could also activate a plant defense response mechanism. This is the first report describing the RSS activity for CiLV-C proteins and, moreover, for a member of the familyKitaviridae.This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP), proc. 2014/0845-9, 2017/50222-0, 2015/10249-1, and 2017/19898-8. This work was also supported by Instituto para la Formacion y Aprovechamiento de Recursos Humanos, Becas IFARHU-SENACYT, contrato 270-2018-361, grant BIO2017-88321-R from the Spanish Agencia Estatal de Investigacion (AEI), Fondo Europeo de Desarrollo Regional (FEDER), and the Prometeo Program GV2015/010 from the Generalitat Valenciana.Leastro, MO.; Ortega Castro, DY.; Freitas-Astúa, J.; Kitajima, EW.; Pallás Benet, V.; Sanchez Navarro, JA. (2020). Citrus Leprosis Virus C Encodes Three Proteins With Gene Silencing Suppression Activity. Frontiers in Microbiology. 11:1-16. https://doi.org/10.3389/fmicb.2020.01231S11611Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., & Vance, V. B. (1998). A viral suppressor of gene silencing in plants. Proceedings of the National Academy of Sciences, 95(22), 13079-13084. doi:10.1073/pnas.95.22.13079Aravin, A. A., Naumova, N. M., Tulin, A. V., Vagin, V. V., Rozovsky, Y. M., & Gvozdev, V. A. (2001). Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Current Biology, 11(13), 1017-1027. doi:10.1016/s0960-9822(01)00299-8Arena, G. D., Ramos-González, P. L., Nunes, M. A., Ribeiro-Alves, M., Camargo, L. E. A., Kitajima, E. W., … Freitas-Astúa, J. (2016). Citrus leprosis virus C Infection Results in Hypersensitive-Like Response, Suppression of the JA/ET Plant Defense Pathway and Promotion of the Colonization of Its Mite Vector. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01757Borges, F., & Martienssen, R. A. (2015). The expanding world of small RNAs in plants. Nature Reviews Molecular Cell Biology, 16(12), 727-741. doi:10.1038/nrm4085Brigneti, G. (1998). Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17(22), 6739-6746. doi:10.1093/emboj/17.22.6739Burgyán, J., & Havelda, Z. (2011). Viral suppressors of RNA silencing. Trends in Plant Science, 16(5), 265-272. doi:10.1016/j.tplants.2011.02.010Cañizares, M. C., Navas-Castillo, J., & Moriones, E. (2008). Multiple suppressors of RNA silencing encoded by both genomic RNAs of the crinivirus, Tomato chlorosis virus. Virology, 379(1), 168-174. doi:10.1016/j.virol.2008.06.020Castel, S. E., & Martienssen, R. A. (2013). RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 14(2), 100-112. doi:10.1038/nrg3355Chiba, M., Reed, J. C., Prokhnevsky, A. I., Chapman, E. J., Mawassi, M., Koonin, E. V., … Dolja, V. V. (2006). Diverse suppressors of RNA silencing enhance agroinfection by a viral replicon. Virology, 346(1), 7-14. doi:10.1016/j.virol.2005.09.068Delgadillo, M. O., Sáenz, P., Salvador, B., García, J. A., & Simón-Mateo, C. (2004). Human influenza virus NS1 protein enhances viral pathogenicity and acts as an RNA silencing suppressor in plants. Journal of General Virology, 85(4), 993-999. doi:10.1099/vir.0.19735-0Ding, S.-W., & Voinnet, O. (2007). Antiviral Immunity Directed by Small RNAs. Cell, 130(3), 413-426. doi:10.1016/j.cell.2007.07.039Freitas-Astúa, J., Ramos-González, P. L., Arena, G. D., Tassi, A. D., & Kitajima, E. W. (2018). Brevipalpus-transmitted viruses: parallelism beyond a common vector or convergent evolution of distantly related pathogens? Current Opinion in Virology, 33, 66-73. doi:10.1016/j.coviro.2018.07.010García, J. A., & Pallás, V. (2015). Viral factors involved in plant pathogenesis. Current Opinion in Virology, 11, 21-30. doi:10.1016/j.coviro.2015.01.001Garita, L. C., Tassi, A. D., Calegario, R. F., Freitas-Astúa, J., Salaroli, R. B., Romão, G. O., & Kitajima, E. W. (2014). Experimental host range of Citrus leprosis virus C (CiLV-C). Tropical Plant Pathology, 39(1), 43-55. doi:10.1590/s1982-56762014005000004Guilley, H., Bortolamiol, D., Jonard, G., Bouzoubaa, S., & Ziegler-Graff, V. (2009). Rapid screening of RNA silencing suppressors by using a recombinant virus derived from beet necrotic yellow vein virus. Journal of General Virology, 90(10), 2536-2541. doi:10.1099/vir.0.011213-0Guo, Q., Liu, Q., A. Smith, N., Liang, G., & Wang, M.-B. (2016). RNA Silencing in Plants: Mechanisms, Technologies and Applications in Horticultural Crops. Current Genomics, 17(6), 476-489. doi:10.2174/1389202917666160520103117Gupta, A. K., Hein, G. L., Graybosch, R. A., & Tatineni, S. (2018). Octapartite negative-sense RNA genome of High Plains wheat mosaic virus encodes two suppressors of RNA silencing. Virology, 518, 152-162. doi:10.1016/j.virol.2018.02.013Hamilton, A. (2002). Two classes of short interfering RNA in RNA silencing. The EMBO Journal, 21(17), 4671-4679. doi:10.1093/emboj/cdf464Hamilton, A. J., & Baulcombe, D. C. (1999). A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science, 286(5441), 950-952. doi:10.1126/science.286.5441.950Hammond, S. M., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 404(6775), 293-296. doi:10.1038/35005107Jones, L., Hamilton, A. J., Voinnet, O., Thomas, C. L., Maule, A. J., & Baulcombe, D. C. (1999). RNA–DNA Interactions and DNA Methylation in Post-Transcriptional Gene Silencing. The Plant Cell, 11(12), 2291-2301. doi:10.1105/tpc.11.12.2291Kakumani, P. K., Ponia, S. S., S, R. K., Sood, V., Chinnappan, M., Banerjea, A. C., … Bhatnagar, R. K. (2013). Role of RNA Interference (RNAi) in Dengue Virus Replication and Identification of NS4B as an RNAi Suppressor. Journal of Virology, 87(16), 8870-8883. doi:10.1128/jvi.02774-12Kuchibhatla, D. B., Sherman, W. A., Chung, B. Y. W., Cook, S., Schneider, G., Eisenhaber, B., & Karlin, D. G. (2013). Powerful Sequence Similarity Search Methods and In-Depth Manual Analyses Can Identify Remote Homologs in Many Apparently «Orphan» Viral Proteins. Journal of Virology, 88(1), 10-20. doi:10.1128/jvi.02595-13LAEMMLI, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227(5259), 680-685. doi:10.1038/227680a0Leastro, M. O., Kitajima, E. W., Silva, M. S., Resende, R. O., & Freitas-Astúa, J. (2018). Dissecting the Subcellular Localization, Intracellular Trafficking, Interactions, Membrane Association, and Topology of Citrus Leprosis Virus C Proteins. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01299Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2015). The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology, 478, 39-49. doi:10.1016/j.virol.2015.01.031Leastro, M. O., Pallás, V., Resende, R. O., & Sánchez-Navarro, J. A. (2017). The functional analysis of distinct tospovirus movement proteins (NS M ) reveals different capabilities in tubule formation, cell-to-cell and systemic virus movement among the tospovirus species. Virus Research, 227, 57-68. doi:10.1016/j.virusres.2016.09.023Li, F., & Ding, S.-W. (2006). Virus Counterdefense: Diverse Strategies for Evading the RNA-Silencing Immunity. Annual Review of Microbiology, 60(1), 503-531. doi:10.1146/annurev.micro.60.080805.142205Li, W. X., & Ding, S. W. (2001). Viral suppressors of RNA silencing. Current Opinion in Biotechnology, 12(2), 150-154. doi:10.1016/s0958-1669(00)00190-7Locali-Fabris, E. C., Freitas-Astúa, J., Souza, A. A., Takita, M. A., Astúa-Monge, G., Antonioli-Luizon, R., … Machado, M. A. (2006). Complete nucleotide sequence, genomic organization and phylogenetic analysis of Citrus leprosis virus cytoplasmic type. Journal of General Virology, 87(9), 2721-2729. doi:10.1099/vir.0.82038-0Sue Loesch-Fries, L., Jarvis, N. P., Krahn, K. J., Nelson, S. E., & Hall, T. C. (1985). Expression of Alfalfa Mosaic virus RNA 4 cDNA transcripts in Vitro and in Vivo. Virology, 146(2), 177-187. doi:10.1016/0042-6822(85)90002-9Lu, R., Folimonov, A., Shintaku, M., Li, W.-X., Falk, B. W., Dawson, W. O., & Ding, S.-W. (2004). Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome. Proceedings of the National Academy of Sciences, 101(44), 15742-15747. doi:10.1073/pnas.0404940101Lu, R., Maduro, M., Li, F., Li, H. W., Broitman-Maduro, G., Li, W. X., & Ding, S. W. (2005). Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature, 436(7053), 1040-1043. doi:10.1038/nature03870Lu, R. (2003). High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. The EMBO Journal, 22(21), 5690-5699. doi:10.1093/emboj/cdg546Lucy, A. P. (2000). Suppression of post-transcriptional gene silencing by a plant viral protein localized in the nucleus. The EMBO Journal, 19(7), 1672-1680. doi:10.1093/emboj/19.7.1672Mallory, A. C., Reinhart, B. J., Bartel, D., Vance, V. B., & Bowman, L. H. (2002). A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proceedings of the National Academy of Sciences, 99(23), 15228-15233. doi:10.1073/pnas.232434999Mann, K. S., Johnson, K. N., Carroll, B. J., & Dietzgen, R. G. (2016). Cytorhabdovirus P protein suppresses RISC-mediated cleavage and RNA silencing amplification in planta. Virology, 490, 27-40. doi:10.1016/j.virol.2016.01.003Martínez-Pérez, M., Navarro, J. A., Pallás, V., & Sánchez-Navarro, J. A. (2019). A sensitive and rapid RNA silencing suppressor activity assay based on alfalfa mosaic virus expression vector. Virus Research, 272, 197733. doi:10.1016/j.virusres.2019.197733Matranga, C., & Zamore, P. D. (2007). Small silencing RNAs. Current Biology, 17(18), R789-R793. doi:10.1016/j.cub.2007.07.014Mérai, Z., Kerényi, Z., Kertész, S., Magna, M., Lakatos, L., & Silhavy, D. (2006). Double-Stranded RNA Binding May Be a General Plant RNA Viral Strategy To Suppress RNA Silencing. Journal of Virology, 80(12), 5747-5756. doi:10.1128/jvi.01963-05Moissiard, G., & Voinnet, O. (2004). Viral suppression of RNA silencing in plants. Molecular Plant Pathology, 5(1), 71-82. doi:10.1111/j.1364-3703.2004.00207.xMoon, J. Y., & Park, J. M. (2016). Cross-Talk in Viral Defense Signaling in Plants. Frontiers in Microbiology, 07. doi:10.3389/fmicb.2016.02068Nakanishi, K. (2016). Anatomy of RISC  : how do small RNAs and chaperones activate Argonaute proteins? WIREs RNA, 7(5), 637-660. doi:10.1002/wrna.1356Pallás, V., Más, P., & Sánchez-Navarro, J. A. (1998). Detection of Plant RNA Viruses by Nonisotopic Dot-Blot Hybridization. Plant Virology Protocols, 461-468. doi:10.1385/0-89603-385-6:461Pascon, R. C., Kitajima, J. P., Breton, M. C., Assumpção, L., Greggio, C., Zanca, A. S., … da Silva, A. C. R. (2006). The Complete Nucleotide Sequence and Genomic Organization of Citrus Leprosis Associated Virus, Cytoplasmatic type (CiLV-C). Virus Genes, 32(3), 289-298. doi:10.1007/s11262-005-6913-1Peiro, A., Martinez-Gil, L., Tamborero, S., Pallas, V., Sanchez-Navarro, J. A., Mingarro, I., & Simon, A. (2013). The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes. Journal of Virology, 88(5), 3016-3026. doi:10.1128/jvi.03648-13Pfeffer, S., Dunoyer, P., Heim, F., Richards, K. E., Jonard, G., & Ziegler-Graff, V. (2002). P0 of Beet Western Yellows Virus Is a Suppressor of Posttranscriptional Gene Silencing. Journal of Virology, 76(13), 6815-6824. doi:10.1128/jvi.76.13.6815-6824.2002Pisacane, P., & Halic, M. (2017). Tailing and degradation of Argonaute-bound small RNAs protect the genome from uncontrolled RNAi. Nature Communications, 8(1). doi:10.1038/ncomms15332Powers, J. G., Sit, T. L., Qu, F., Morris, T. J., Kim, K.-H., & Lommel, S. A. (2008). A Versatile Assay for the Identification of RNA Silencing Suppressors Based on Complementation of Viral Movement. Molecular Plant-Microbe Interactions®, 21(7), 879-890. doi:10.1094/mpmi-21-7-0879Pumplin, N., & Voinnet, O. (2013). RNA silencing suppression by plant pathogens: defence, counter-defence and counter-counter-defence. Nature Reviews Microbiology, 11(11), 745-760. doi:10.1038/nrmicro3120Qu, F., & Morris, T. J. (2005). Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Letters, 579(26), 5958-5964. doi:10.1016/j.febslet.2005.08.041Rodamilans, B., Valli, A., Mingot, A., San León, D., López-Moya, J. J., & García, J. A. (2018). An atypical RNA silencing suppression strategy provides a snapshot of the evolution of sweet potato-infecting potyviruses. Scientific Reports, 8(1). doi:10.1038/s41598-018-34358-yRoth, B. (2004). Plant viral suppressors of RNA silencing. Virus Research, 102(1), 97-108. doi:10.1016/j.virusres.2004.01.020Roy, A., Stone, A., Otero-Colina, G., Wei, G., Choudhary, N., Achor, D., … Brlansky, R. H. (2013). Genome Assembly of Citrus Leprosis Virus Nuclear Type Reveals a Close Association with Orchid Fleck Virus. Genome Announcements, 1(4). doi:10.1128/genomea.00519-13Samuel, G. H., Wiley, M. R., Badawi, A., Adelman, Z. N., & Myles, K. M. (2016). Yellow fever virus capsid protein is a potent suppressor of RNA silencing that binds double-stranded RNA. Proceedings of the National Academy of Sciences, 113(48), 13863-13868. doi:10.1073/pnas.1600544113Sanchez-Navarro, J., Miglino, R., Ragozzino, A., & Bol, J. F. (2001). Engineering of Alfalfa mosaic virus RNA 3 into an expression vector. Archives of Virology, 146(5), 923-939. doi:10.1007/s007050170125Silhavy, D. (2002). A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. The EMBO Journal, 21(12), 3070-3080. doi:10.1093/emboj/cdf312Taschner, P. E. M., Van Der Kuyl, A. C., Neeleman, L., & Bol, J. F. (1991). Replication of an incomplete alfalfa mosaic virus genome in plants transformed with viral replicase genes. Virology, 181(2), 445-450. doi:10.1016/0042-6822(91)90876-dThomas, C. L., Leh, V., Lederer, C., & Maule, A. J. (2003). Turnip crinkle virus coat protein mediates suppression of RNA silencing in nicotiana benthamiana. Virology, 306(1), 33-41. doi:10.1016/s0042-6822(02)00018-1Van Dun, C. M. P., Van Vloten-Doting, L., & Bol, J. F. (1988). Expression of alfalfa mosaic virus cDNA1 and 2 in transgenic Tobacco plants. Virology, 163(2), 572-578. doi:10.1016/0042-6822(88)90298-xVanitharani, R., Chellappan, P., Pita, J. S., & Fauquet, C. M. (2004). Differential Roles of AC2 and AC4 of Cassava Geminiviruses in Mediating Synergism and Suppression of Posttranscriptional Gene Silencing. Journal of Virology, 78(17), 9487-9498. doi:10.1128/jvi.78.17.9487-9498.2004Voinnet, O., Lederer, C., & Baulcombe, D. C. (2000). A Viral Movement Protein Prevents Spread of the Gene Silencing Signal in Nicotiana benthamiana. Cell, 103(1), 157-167. doi:10.1016/s0092-8674(00)00095-7Voinnet, O., Pinto, Y. M., & Baulcombe, D. C. (1999). Suppression of gene silencing: A general strategy used by diverse DNA and RNA viruses of plants. Proceedings of the National Academy of Sciences, 96(24), 14147-14152. doi:10.1073/pnas.96.24.14147Voinnet, O., Vain, P., Angell, S., & Baulcombe, D. C. (1998). Systemic Spread of Sequence-Specific Transgene RNA Degradation in Plants Is Initiated by Localized Introduction of Ectopic Promoterless DNA. Cell, 95(2), 177-187. doi:10.1016/s0092-8674(00)81749-3Vuorinen, A. L., Kelloniemi, J., & Valkonen, J. P. T. (2011). Why do viruses need phloem for systemic invasion of plants? Plant Science, 181(4), 355-363. doi:10.1016/j.plantsci.2011.06.008Yaegashi, H., Isogai, M., & Yoshikawa, N. (2012). Characterization of Plant Virus-Encoded Gene Silencing Suppressors. Antiviral Resistance in Plants, 113-122. doi:10.1007/978-1-61779-882-5_8Yang, X., Ren, Y., Sun, S., Wang, D., Zhang, F., Li, D., … Zhou, X. (2018). Identification of the Potential Virulence Factors and RNA Silencing Suppressors of Mulberry Mosaic Dwarf-Associated Geminivirus. Viruses, 10(9), 472. doi:10.3390/v10090472Yelina, N. E., Savenkov, E. I., Solovyev, A. G., Morozov, S. Y., & Valkonen, J. P. T. (2002). Long-Distance Movement, Virulence, and RNA Silencing Suppression Controlled by a Single Protein in Hordei- and Potyviruses: Complementary Functions between Virus Families. Journal of Virology, 76(24), 12981-12991. doi:10.1128/jvi.76.24.12981-12991.200
    corecore