19 research outputs found

    Evaluation of a solid nitrogen impregnated MgB2 racetrack coil

    Get PDF
    To develop powerful wind turbine generators using superconducting technology, high-performance superconducting racetrack coils are essential. Herein, we report an evaluation of a multifilamentary magnesium diboride (MgB2) conductor-based racetrack coil cooled and impregnated simultaneously by solid nitrogen (SN2). The coil was wound on a copper former with 13 mm winding width, an inner diameter of 124 mm at the curvature, and 130 mm length of the straight section. An in situ processed S-glass-insulated 36-filament MgB2 wire was wound on the former in two layers with 19.5 turns, and heat treated via the wind and react method without any epoxy resin. The coil was evaluated for critical temperature and transport critical current in the SN2 environment at different temperatures up to 31.3 K in self-field. The coil was able to carry 200 A transport current at 28.8 K in self-field. During coil charging and operation, SN2 effectively acted as an impregnation material. The test results demonstrate the viability to use MgB2 racetrack coil potentially with SN2 impregnation in advanced rotating machine applications

    Synergetic combination of LIMD with CHPD for the production of economical and high performance MgB2 Wires

    Get PDF
    We propose an economical fabrication concept, the localized internal magnesium diffusion (IMD) method. Instead of using a single magnesium (Mg) rod in the center of a metal sheath tube, we use large-sized Mg particles (20-50 mesh) mixed well with cheap 97% crystalline boron powder to fill the metal sheath tube. After a repeated drawing process, the coarse Mg is elongated along the core wire axis of the metal sheath tube. Textured MgB2 grains are then formed during the sintering process. In the localized IMD process, however, there is still a need to improve the overall density. In order to increase the density of the composite, a modified cold high pressure densification (CHPD) technique has been applied before the reaction. It is found that the critical current density (Jc) of the sample made from large-sized Mg with crystalline boron powder and treated by CHPD is increased significantly, so that it is quite comparable with the Jc values of samples made from expensive small magnesium and nanosized amorphous boron powder. At 4.2 K and 8 T, the Jc value of the wire in this work with the cheapest starting materials reaches 10 000 A/cm2 , which is similar to reported values for samples made by the powder-in-tube and IMD processes with expensive nanosized amorphous boron powder. A possible mechanism is proposed, and the microstructure is analyzed to explain this interesting feature. The main goal of this work is to develop a novel and cost-effective fabrication technique by combining the localized IMD process with CHPD and using cheap crystalline boron powder to manufacture MgB2 superconductor wires with electromagnetic performance superior to that of low-temperature Nb-Ti superconductors. 2002-2011 IEEE

    Study of MgO formation and structural defects in in-situ processed MgB2/Fe wires

    No full text
    We fabricated MgB2/Fe wire by a powder-in-tube (PIT) technique, using an in situ process. All wire samples were sintered for 30 min at different sintering temperatures ranging from 650 to 1000 °C. We found strong correlations among crystallinity, critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and microstructures for all MgB2/Fe wires. We observed that the sample with the lowest sintering temperature, ~ 650 °C, had a larger lattice strain, Jc, change in resistivity ∆ρ(ρ300 K - ρ40 K), Hirr, and Hc2, but a lower density and residual resistivity ratio (RRR). Based on the relationships between all these superconducting and microstructure parameters, grain boundaries are likely to be acting as the predominant pinning centers for MgB2, so grain growth of MgB2 corresponds to a reduction of effective pinning. It should be noted that changes in the MgO fraction within the MgB2 matrix were almost independent of the sintering temperature. This indicates that most MgO may be coming from the starting material

    A comparative study on field, temperature, and strain dependences of the critical current for doped and undoped MgB2 wires based on the percolation model

    Get PDF
    Field, temperature, and strain dependences of the critical current for a SiC doped multifilamentary in situ MgB2 wire have been studied. Measurement results were compared with that of the undoped wire, and the origin of the difference in the critical current is discussed. The critical current can be calculated with the percolation model considering the effect of anisotropy. The temperature dependence of the fitting parameters, the upper critical field along the ab-plane, and c-axis is compared with the dirty-limit two-gap theory. To assess the validity of the fitting parameters, resistive transition has been measured especially to extract the upper critical field directly. It is shown that even the resistive broadening can be well explained by a simple parallel path model using the fitting parameters obtained from the critical current analysis

    The enhanced Jc and Birr of in situ MgB2 wires and tapes alloyed with C4H6O5 (malic acid) after cold high pressure densification

    No full text
    Cold high pressure densification, a method recently introduced at GAP in Geneva, was applied for improving the transport critical current density, Jc, and the irreversibility field, Birr, of monofilamentary in situ MgB2 wires and tapes alloyed with 10 wt% C4H6O5 (malic acid). Tapes densified at 1.48 GPa exhibited after reaction an enhancement of Jc from 2 to 4 × 104 A cm−2 at 4.2 K/10 T and from 0.5 to 4 × 104 A cm−2 at 20 K/5 T, while the Birr was enhanced from 19.3 to 22 T at 4.2 K and from 7.5 to 10.0 T at 20 K. Cold densification also caused a strong enhancement of B(104), the field at which Jc takes the value 1 × 104 A cm−2. For tapes subjected to 1.48 GPa, and at 4.2 K were found to increase from 11.8 and 10.5 T to 13.2 and 12.2 T, respectively. Almost isotropic conditions were obtained for rectangular wires with aspect ratios a/bGPa, where and T were obtained. At 20 K, the wires exhibited an almost isotropic behavior, with T and T, Birr(20 K) being ~10 T. These values are equal to or higher than the highest values reported so far for isotropic in situ wires with SiC or other carbon based additives. Further improvements are expected on optimizing the cold high pressure densification process, which has the potential for fabrication of MgB2 wires of industrial lengths

    Influence of hot-pressing on MgB2/Nb/Monel wires

    No full text
    Uniaxial hot-pressing was applied as an alternative way to further improve the grain connectivity of both un-doped and carbon doped MgB2/Nb/Monel wires. In this study, hot-pressing of 100 MPa resulted in the improvement of the mass density, the critical current density, and the grain connectivity of the wires. However, this also caused additional critical current density anisotropy, which is associated with the texture of a- and b-axes oriented grains. In particular, the anisotropy factors of critical current density for the un-doped and the carbon doped conductors were estimated to be 2.6 and 1.7, respectively, under an external magnetic field of 14 T
    corecore