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Abstract  

To develop powerful wind turbine generators using superconducting technology, high-

performance superconducting racetrack coils are essential. Herein, we report an 

evaluation of a multifilamentary magnesium diboride (MgB2) conductor-based 

racetrack coil cooled and impregnated simultaneously by solid nitrogen (SN2). The coil 

was wound on a copper former with 13 mm winding width, an inner diameter of 124 

mm at the curvature, and 130 mm length of the straight section. An in situ processed 

S-glass-insulated 36-filament MgB2 wire was wound on the former in two layers with 
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19.5 turns, and heat treated via the wind and react method without any epoxy resin. 

The coil was evaluated for critical temperature and transport critical current in the SN2 

environment at different temperatures up to 31.3 K in self-field. The coil was able to 

carry 200 A transport current at 28.8 K in self-field. During coil charging and operation, 

SN2 effectively acted as an impregnation material. The test results demonstrate the 

viability to use MgB2 racetrack coil potentially with SN2 impregnation in advanced 

rotating machine applications.  

 

Keywords: MgB2 conductor, racetrack coil, solid nitrogen impregnation, wind turbine 

generators 

 

1. Introduction 

Over usage of non-renewable energy sources around the globe has led to the serious 

problem of global warming. It is therefore imperative to maximize the use of renewable 

energy sources to keep global warming under control. Among the clean energy 

sources, wind power shows good potential for increasing cost-effective production 

capacity worldwide. In a windmill, a wind turbine uses a generator to harvest wind 

energy and convert wind energy into electric power.   

At the end of 2015, the worldwide total capacity of wind energy production was 

approximately 432 GW [1].  In fact, more powerful turbines are required to raise wind 

power production and to minimize overall cost per unit generated energy from a 

windmill [2]. To meet this demand, off-shore wind turbine generators of up to 10-MW 

capacity with superconducting technology are being considered [3-13]. 

Superconducting windings can produce strong magnetic fields due to their ability to 

carry high current without any loss compared to copper (Cu) conductors. This means 

that using direct-drive machine design, more compact, lighter, more efficient, and more 

powerful wind turbine generators can be realized [2, 5, 11, 12, 14]. Several reviews 

have been published on the use of different types of superconductors for wind turbine 

application [6, 15]. Among the commercially available superconductors, magnesium 

diboride (MgB2) with critical temperature (Tc) of 39 K has good potential to employ in 

rotating machines [6, 10, 12, 13, 16]. This is mainly due to its performance – cost ratio 

Page 2 of 18AUTHOR SUBMITTED MANUSCRIPT - SUST-102870.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



at around 20 K compared to high-temperature superconductors (HTS), and its 

availability in long piece-lengths [6, 14, 17].  

In rotating machines, a racetrack coil configuration is used due to its 

electromagnetic and geometric advantages [4, 14, 18, 19]. To employ such 

superconducting coils in practical applications, however, extensive experimental 

validation is required to attain high coil performance. The first MgB2-based racetrack 

coil was fabricated by Sumption et al using 42 m of monofilamentary wire via the wind 

and react method [20]. The coil achieved critical current (Ic) of 120 A in self-field at 4.2 

K. Subsequently, using multifilamentary MgB2 wire, Sumption et al fabricated another 

racetrack coil using the wind and react method [21]. At 5 K and 20 K, the coil reached 

Ic of 197 A and 95 A, respectively. Later, the same group also fabricated several 

racetrack coils using fully formed MgB2 wires for the development of a 2-MW 

superconducting turbogenerator cooled by liquid-hydrogen [22]. One of the coils 

fabricated using monofilamentary MgB2 wire attained Ic of 260 A in self-field at 20 K. 

The INWIND.EU project, funded under the FP7 framework, reported the design and 

winding aspects of an MgB2 racetrack coil for a direct-drive 10-MW wind turbine 

generator pole [2, 8, 13]. Sarmiento et al reported the design and evaluation of a full-

scale MgB2 coil (one double pancake) for the 10-MW SUPRAPOWER wind turbine 

generators [10]. Their double pancake MgB2 coil achieved Ic of 146.26 A, 133.59 A, 

and 91.79 A at 27.5 K, 28.5 K, and 30 K, respectively. We also fabricated two racetrack 

coils using monofilamentary MgB2 conductor and tested them at 4.2 K [18]. These 

coils showed significant winding induced degradation. Coils for large-scale 

applications, however, will undoubtedly need a multifilamentary conductor to minimize 

ac losses. Thus, further work was essential on the fabrication process for 

multifilamentary MgB2 racetrack coil to demonstrate high coil performance.   

Moreover, the test results so far reported on MgB2 racetrack coils have used 

either liquid helium (LHe) or a cryocooler (i.e. conduction cooling) for cooling purpose. 

In fact, a solid cryogen like solid nitrogen (SN2) has also been considered for use as a 

cryogen for superconducting magnets [23-44]. SN2 is known to improve the thermal 

stability of a superconducting magnet due to its high heat capacity [24, 27, 38, 41, 42]. 

In addition, due to its solid form, SN2 can also act as an impregnation material in the 

superconducting magnet system to restrict the movement of the conductor while the 

coil is in operation [34]. This means that the mandatory requirement for epoxy 

Page 3 of 18 AUTHOR SUBMITTED MANUSCRIPT - SUST-102870.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



impregnation in superconducting magnets can be eliminated [45]. SN2 has been used 

as an impregnation material in solenoid and solenoid pancake coils [24, 34, 46]. SN2 

has not been used, however, as an impregnation material for racetrack coils. Solenoid 

coil winding is self-supported (i.e. due to winding tension) against expansion forces. 

In a racetrack coil, however, the winding at the straight section is not self-supported, 

and hence, external support is required to compensate for expansion forces during 

coil charging and operation [47]. Thus, it was necessary to evaluate SN2 impregnation 

performance of a superconducting racetrack coil.  

In this article, therefore, with a view towards the development of a pole coil for wind 

turbine generators and to explore the feasibility of using SN2 for impregnation in MgB2 

racetrack coils, we present the fabrication and test results for an SN2 impregnated 

racetrack coil fabricated via the wind and react method employing a multifilament 

MgB2 conductor above 28 K in an SN2 environment.  

 

 

 

Figure 1. (a) Cross-sectional image of the multifilamentary MgB2 wire (Platinum 

coating was deposited on the wire for imaging, thus contrast was not visible for Monel 

and Cu), (b) elemental maps for Ni, Cu, and Nb. Monel primarily consists of Ni and Cu.  

2. Experimental details  

The in-situ multifilamentary carbon (C)-doped MgB2 conductor (strand no. 3520S) was 

supplied by Hyper Tech Research Inc. for the coil. The diameter of the wire was 1.1 

mm, and 1.3 mm including the S-glass insulation. Each individual MgB2 filament was 

surrounded by a niobium (Nb) barrier, and Cu was used as a stabilizer in the matrix. 
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Monel was used as an outer sheath. The conductor contained 36 filaments and one 

Cu filament at the centre. The filling factor of the conductor was 11.1 %. Figure 1(a) 

and (b) shows a cross-sectional image and elemental maps of the MgB2 wire used for 

the coil winding. 

To wind the coil, a Cu former with a racetrack profile was designed and fabricated. 

The former had a winding width of 13 mm, an inner diameter (I.D.) of 124 mm at the 

curvature, and a straight section with a length of 130 mm. To pass current through the 

coil conductor, two current terminals of 30 mm in diameter were fabricated. Ceramic 

washers were used to provide electrical insulation between the current terminals and 

the coil former. There was also an air gap between the current terminals and the coil 

former. The air gap between the terminals and the former was filled using insulated 

Cu and Stycast® 2850FT (Catalyst 9) after heat treatment of the coil to enhance the 

thermal contact.  

Table 1. Specifications of the MgB2 racetrack coil. 

Parameters Specifications 

Coil type Racetrack 
Fabrication method Wind and react 
Strand (HTR 3520S) MgB2/Nb/Cu/Monel 

Nb: barrier, Cu: matrix,  
Monel: sheath 

Strand type In situ 
Carbon content (wt. %) 2 
Filament count 36 + 1 (Cu at centre) 
Insulation S-glass 
Wire diameter with insulation (mm) 1.3 
Wire diameter without insulation (mm) 1.1 
SC fill factor of the wire (%) 11.1 
Coil winding width (mm) 13 
Coil I.D. at curvature (mm) 124.0 
Coil O.D. at curvature (mm) 129.2 
Length of the straight section (mm) 130.0 
Turns per layer 19.5 (1st : 10, 2nd : 9.5) 
Total layers 2 
Heat treatment (°C·h-1) 675·1 
Impregnation  No (only SN2 while cooling down) 

The coil was wound using 13 m wire in two layers with a total of 19.5 turns (1st 

layer: 10 turns, 2nd layer: 9.5 turns). One turn was wound on each current terminal to 

reduce electrical contact resistance between the current terminal and the MgB2 wire 

[48]. The heat treatment of the coil was carried out at 675 °C for 1 h in an inert argon 
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atmosphere, with a temperature ramp rate of 5 °C·min-1. The coil was naturally cool 

down to room temperature following the heat treatment. After heat treatment, the 

utmost precautions were taken to avoid conductor movement. To measure the voltage 

drop during current charging, two pairs of voltage taps were installed across the coil. 

One pair of voltage taps were installed across the entire coil (V1, 12.74 m) and one 

pair across six turns in the outer layer (V2, 3.95 m). The coil was not impregnated 

using any epoxy. Table 1 shows the specifications of the MgB2 racetrack coil, whereas 

figure 2(a) shows a digital image of the fabricated MgB2 racetrack coil. The commercial 

wind turbine coils will have straight section much longer than the curvature diameter. 

Thus, it can be more difficult to keep the wire in the straight sections in place before 

the liquid nitrogen (LN2) is frozen compared to this experimental coil. 

 

Figure 2. Digital images: (a) fabricated racetrack coil (wind and react), (b) racetrack 

coil in the SN2 chamber. 

To characterise the transport properties of the MgB2 racetrack coil, the coil was 

mounted in the SN2 chamber, as can be seen in figure 2(b). For further details of our 

SN2 cooling system, see [43]. Due to space constraints, the coil was installed at an 

angle. In the SN2 chamber, the LN2 inlet is located at the bottom (see figure 2(b)). 
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Thus, there was a possibility that the coil could cool down unevenly because the 

bottom section of the coil would come into contact with the LN2 first. A large gradient 

of temperature across the coil while cooling down from 300 K to 77 K could develop 

stress on the coil conductor, which could degrade its performance [21, 49]. Therefore, 

to keep the temperature gradient at a minimum while cooling down from 300 K to 77 

K, ten Cu straps were installed on the coil former from the tapped holes (see figure 

2(a)), as shown in figure 2(b). The flexible Cu leads were used to make the connection 

between the coil and current leads.             

 

Figure 3. Schematic representation of the temperature and Hall sensor(s) on a 3D 

model of the racetrack coil. The Hall sensor was installed at the centre (at z = 0) of the 

coil. Temperature sensor locations are indicated (T1 – at the top of the former, T2 – at 

bottom of the former below current terminal, T3 – at the positive current terminal, and 

T4 – at the bottom of the former).    

Figure 3 is a schematic representation of the temperature and Hall sensor(s) on a 

three-dimensional (3D) model of the racetrack coil. The magnetic field (B) at the centre 

of the coil at z = 0 was measured using a Hall sensor (0.1 G sensitivity). As shown in 

the figure, four carbon ceramic sensors (CCS) were also installed on the coil to monitor 

the temperature.    
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3. Results and discussion  

Prior to cool down of the MgB2 racetrack coil for transport measurements, finite 

element analysis (FEA) of the coil was performed to estimate the field constant, self-

inductance, centre field (at z = 0), field distribution in the major and minor directions in 

the bore, and peak field on the coil in advance. A transport current of 200 A was used 

for the FEA simulations as that was the maximum limit of our power supply. The 

COMSOL Multiphysics software package was used for FEA simulations. The 

specifications of the fabricated coil were used to model the coil winding for the FEA 

simulations. At 200 A transport current, the field at the centre (at z = 0) of the coil and 

the total stored magnetic energy was estimated to be 0.0283 T and 3.29 J, respectively. 

These results indicate field constant and self-inductance of 1.415 G·A-1 and 165 H, 

respectively. To further evaluate the field distribution in the bore of the coil at 200 A, 

the magnetic field density norm was plotted along the major (x) and minor (y) directions 

at z = 0, as shown in figure 4. In the x- and y-directions at z = 0, the peak fields were 

0.191 T and 0.174 T, respectively. This means that the curvature region experienced 

9.8 % higher field than the straight section at the given location. The inset of figure 4 

shows the surface plot of the magnetic field density of the coil. As expected, the peak 

field on the surface of the coil was 0.2034 T (at 200 A) at the inner curvature. The FEA 

estimated parameters of the coil are shown in table 2.  

 

Figure 4. Magnetic field density norm versus axial distance from the centre profile in 

the coil at 200 A. The long and short sections of the coil are represented by x- and y 

directions, respectively. A surface plot of the magnetic field density is shown in the 

inset.   
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The SN2 cooling system was evacuated (<2  10-6 Torr) using a turbomolecular 

pump to initiate the cool down of the coil [43]. Then, LN2 was slowly introduced into 

the SN2 chamber. The cryocooler was switched on when the temperature on its 2nd 

stage (attached to the SN2 chamber) reached 280 K. The LN2 transfer rate was 

manually controlled such that the temperature gradient across the coil during cool 

down remained as small as possible. 

Table 2. FEA simulated and measured transport properties of the racetrack coil. The 

maximum (max.) and minimum (min.) are the temperatures on the coil while Ic 

measurement.  

Parameters Values 

FEA simulated   
Field constant (G·A-1) 1.415 
Inductance, L (µH)  165 
Centre field at z = 0 (T) at 200 A 0.0283 
Peak field (T) at 200 A 0.2034 
Measured   
Field constant (G·A-1) 1.385 
Inductance, L (µH) 179 
Centre field at z = 0 (T) at 200 A 0.0277 
Tc (K) 34.5 
Ic (A) at max.: 28.8 K, min.: 27.6 K >200 
Ic (A) at max.: 30.3 K, min.: 29.7 K 147.0 
Ic (A) at max.: 30.8 K, min.: 30.2 K 118.7 
Ic (A) at max.: 31.3 K, min.: 30.7 K 90.1 

 

Figure 5(a) and (b) shows the temperature versus time and the temperature 

gradient versus time profiles while cooling from 300 K to 77 K of the various 

temperature sensors installed on the racetrack coil, respectively. The time to cool 

down the coil from 300 K to 77 K was approximately 6 h, and the cool down was 

reasonably uniform (figure 5(a)). As can be seen in figure 5(b), the temperature 

gradients while cooling down from 300 K to 77 K were within ±5 K. Among the three 

temperature gradients, the temperature gradient between T1 and T2 was lowest, as 

they were installed geometrically close to each other. The positive current terminal 

was connected with current leads (see figure 2(b)) and a thermal strap was not 

installed on it. Thus, to cool down the current terminal, the entire flexible Cu lead 

needed to be cooled. This was the reason for the high temperature at the T3 location 

compared to T1. As a result, a negative temperature gradient was observed between 
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T1 and T3. As expected, the bottom section of the coil cooled first because it was in 

the vicinity of the LN2 inlet (see figure 2(b)). Therefore, a positive temperature gradient 

was recorded between T1 and T4. Once the coil reached 77 K, the SN2 chamber was 

completely filled with LN2. The inlet of the chamber was closed, the non-returning valve 

was installed in the outlet, and further cool down was achieved using the cryocooler.  

 

Figure 5. (a) Temperature versus time profiles from 300 K to 77 K, (b) temperature 

gradient versus time profiles from 300 K to 77 K, (c) temperature versus time profiles 

from 77 K to 28.3 K, and (d) temperature gradient versus time profiles from 77 K to 

28.3 K during cool down of the coil in the SN2 chamber. The cool down data are 

continuous in time. The legends in (a) and (c), and (b) and (d) are the same.    

Like figure 5(a) and (b), figure 5(c) and (d) shows similar temperature profiles of 

the coil while cooling from 77 K to 28.3 K (the minimum temperature on the coil). As 

can be seen in figure 5(c), it took 69 h to cool down the coil from 77 K to 28.3 K. The 

two typical phase transitions of SN2 were recorded at ~63 K (liquid to solid) and ~35.6 

K (solid to solid) [45]. In the SN2 chamber, after the liquid to solid phase transition at 

~63 K, the temperature of the top section of the SN2 was reduced first due to the 
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proximity of the cooling source (i.e. the cryocooler) and the low thermal diffusivity of 

SN2  [45]. The temperature gradients were negative, therefore, between T1 and T2; T1 

and T3; and T1 and T4 while cooling down from 77 K (figure 5(d)). 

While cooling down, Tc of the racetrack coil was evaluated by passing 100 mA 

constant current from 36.7 K. Figure 6(a) shows the resistance versus temperature 

profile of the coil. The temperature sensor at the bottom of the coil (T4) was taken as 

the reference temperature for this measurement because it was measuring the highest 

temperature on the coil during cool down. The measured Tc of the coil was 34.5 K. 

The Tc was consistent with the wire specification.   

In the next step, the self-inductance and field constant of the coil was measured. 

For this purpose, a current of up to 10 A was passed through the coil at a ramp rate of 

0.25 A·s-1, and the magnetic field at the centre of the coil and the voltage drop across 

the entire coil were recorded simultaneously. The measured field constant and self-

inductance (based on the inductive voltage across the coil during coil charging) of the 

coil were 1.385 G·A-1, and 179 H, respectively. These parameters were consistent 

with the FEA simulated parameters (see table 2). 

 To evaluate the transport properties of the racetrack coil, the Ic of the coil was 

measured by the standard four-probe method at 28.8 K (the highest temperature (T4) 

on the coil) using the 1 V·cm-1 criterion, as shown in figure 6(b). At 28.8 K, in a self-

field of 0.2034 T, the coil was able to carry 200 A current, which was the limit of the 

power supply. During the charging process, the temperatures on the coil remained 

constant. A slight temperature rise was observed on the current terminal, however, 

due to the mechanical connection between the current lead and the terminal. In 

comparison to our previously reported results on MgB2 racetrack coils [18], the 

racetrack coil in this work showed significantly enhanced transport properties. To 

achieve high performance, several improvements were made in this work compared 

to our previous work. Firstly, in order to improve the strain tolerance and to avoid 

mismatch of the thermal expansion coefficient of the epoxy resin with that of the MgB2 

wire, in this work, we used multifilament wire without any epoxy impregnation [50]. 

Secondly, the coil fabrication process was optimized such that no conductor 

movement took place after heat treatment of the coil. The racetrack coil in this work 

was impregnated using only SN2. This means that, as in a solenoid, in the racetrack 
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coil, SN2 also effectively acted as an impregnation material and held the conductors 

in place during operation. To the best of our knowledge, this work is the first to show 

a transport current as high as 200 A above 28 K in an MgB2 racetrack coil test results 

reported so far.    

 

 

Figure 6. (a) Resistance versus temperature profile, electric field versus current 

characteristics (b) at 28.8 K (T4), and (c) at 30.3 K, 30.8 K, and 31.3 K (T1) for the 

racetrack coil. The dashed green line is the anticipated electric field line. The 

temperature sensor location T1 was at the top of the coil, and T4 was at the bottom of 

the coil. V1 and V2 represent the voltage taps across the entire coil and outer layer, 
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respectively. The current ramp rate at 30.3 K was 0.5 A·s-1, whereas, at 30.8 and 31.3 

K, it was 1 A·s-1. 

 To further measure the transport properties of the coil above 28.8 K, the 

temperature of the coil was increased using a heater at the 2nd stage (attached to the 

SN2 chamber) of the cryocooler. The temperature dependent Ic(s) of the coil is shown 

in figure 6(c). The Ic(s) values of the coil at 30.3 K, 30.8 K, and 31.3 K were 147.0 A, 

118.7 A, and 90.1 A, respectively. The temperature sensor at the top of the coil (T1) 

was taken as a reference temperature for this measurement as it measured the 

highest temperature on the coil while the temperature was increasing. In the SN2 

chamber, as the temperature was rising, the temperature of the top section of the SN2 

was raised first due to the proximity of the heater, and the low thermal diffusivity of 

SN2 [45]. As can be seen in figure 6(c), at 30.8 K and 31.3 K, very sharp quench like 

transitions from the superconducting to the normal state was observed in the outer 

layer. In contrast, the transition at 30.3 K across the entire coil was relatively smooth. 

As soon as the transition was observed, the current was decreased from 147 A to 

avoid irreversible damage in the coil due to the transient resistive heating at high 

currents. This indicates that the coil had an Ic of ~147 A at 30.3 K. The measured 

transport properties of the coil are listed in table 2. The expected Ic(s) of the coil at 15 

K in 2 T and 25 K in 1 T would be around 221 A and 105 A, respectively based on the 

short-wire Ic measurement in LHe vapour cooling.      

4. Conclusions  

We fabricated and evaluated the transport properties of an SN2 impregnated 

multifilamentary MgB2-based racetrack coil above 28 K in self-field. Firstly, FEA 

simulations of the coil were carried out to estimate some of the critical parameters of 

the coil. The FEA simulated field constant, self-inductance, and centre field at z = 0 

were 1.415 G·A-1, 165 H, and 0.0283 T (at 200 A), respectively. These values were 

consistent with the measured values of 1.385 G·A-1, 179 H, and 0.0277 T (at 200 A), 

respectively. In the next step, Tc of the coil was measured. The measured Tc of the 

coil was 34.5 K, which was consistent with the wire specification. Finally, the coil was 

evaluated for transport current up to 200 A at different temperatures. The transport 

current of the coil at 28.8 K, 30.3 K, 30.8 K, and 31.3 K was measured to be >200 A, 

147 A, 118.7 A, and 90.1 A, respectively, at self-field. During current charging up to 
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200 A, SN2 effectively acted as an impregnation material and held the conductors in 

place. According to the literature, this work is the first to show transport current as high 

as 200 A above 28 K in an MgB2 racetrack coil. Such high performance of the coil 

demonstrates the suitability of MgB2 racetrack coil potentially with SN2 cooling for the 

application in future wind turbine generators.  
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