33 research outputs found

    A Gossip Protocol for Dynamic Resource Management in Large Cloud Environments

    Full text link

    Enabling distributed key-value stores with low latency-impact snapshot support

    Get PDF
    Current distributed key-value stores generally provide greater scalability at the expense of weaker consistency and isolation. However, additional isolation support is becoming increasingly important in the environments in which these stores are deployed, where different kinds of applications with different needs are executed, from transactional workloads to data analytics. While fully-fledged ACID support may not be feasible, it is still possible to take advantage of the design of these data stores, which often include the notion of multiversion concurrency control, to enable them with additional features at a much lower performance cost and maintaining its scalability and availability. In this paper we explore the effects that additional consistency guarantees and isolation capabilities may have on a state of the art key-value store: Apache Cassandra. We propose and implement a new multiversioned isolation level that provides stronger guarantees without compromising Cassandra's scalability and availability. As shown in our experiments, our version of Cassandra allows Snapshot Isolation-like transactions, preserving the overall performance and scalability of the system.This work is partially supported by the Ministry of Science and Technology of Spain and the European Union’s FEDER funds (TIN2007-60625, TIN2012-34557), by the Generalitat de Catalunya (2009-SGR-980), by the BSC-CNS Severo Ochoa program (SEV-2011-00067), by the HiPEAC European Network of Excellence (IST- 004408, FP7-ICT-217068, FP7-ICT-287759), and by IBM through the 2008 and 2010 IBM Faculty Award program.Peer ReviewedPostprint (author’s final draft

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    A bug and correction for the rotation search alogrithm

    No full text

    A Gossip Protocol for Dynamic Resource Management in Large Cloud Environments

    No full text
    We address the problem of dynamic resource management for a large-scale cloud environment. Our contribution includes outlining a distributed middleware architecture and presenting one of its key elements: a gossip protocol that (1) ensures fair resource allocation among sites/applications, (2) dynamically adapts the allocation to load changes and (3) scales both in the number of physical machines and sites/applications. We formalize the resource allocation problem as that of dynamically maximizing the cloud utility under CPU and memory constraints. We first present a protocol that computes an optimalsolution without considering memory constraints and prove correctness and convergence properties. Then, we extend that protocol to provide an efficient heuristic solution for the complete problem, which includes minimizing the cost for adapting an allocation. The protocol continuously executes on dynamic, local input and does not require global synchronization, as other proposed gossip protocols do. We evaluate the heuristic protocol through simulation and find its performance to be well-aligned with our design goals.© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.QC 20120611</p

    and

    No full text
    Since many Internet applications employ a multitier architecture, in this article, we focus on the problem of analytically modeling the behavior of such applications. We present a model based on a network of queues where the queues represent different tiers of the application. Our model is sufficiently general to capture (i) the behavior of tiers with significantly different performance characteristics and (ii) application idiosyncrasies such as session-based workloads, tier replication, load imbalances across replicas, and caching at intermediate tiers. We validate our model using real multitier applications running on a Linux server cluster. Our experiments indicate that our model faithfully captures the performance of these applications for a number of workloads and configurations. Furthermore, our model successfully handles a comprehensive range of resource utilization—from 0 to near saturation for the CPU—for two separate tiers. For a variety of scenarios, including those with caching at one of the application tiers, the average response times predicted by our model were within the 95 % confidence intervals of the observed average response times. Our experiments also demonstrate the utility of the model for dynamic capacity provisioning, performance prediction, bottleneck identification, and session policing. In one scenario, where the request arrival rate increased from less than 1500 to nearly 4200 requests/minute, a dynamic provisionin

    Performance Management for Cluster Based Web Services

    No full text
    We present an architecture and prototype implementation of a performance management system for cluster-based web services. The system supports multiple classes of web services traffic and allocates server resources dynamically so to maximize the expected value of a given cluster utility function in the face of fluctuating loads. The cluster utility is a function of the performance delivered to the various classes, and this leads to differentiated service. In this paper we will use the average response time as the performance metric. The management system is transparent: it requires no changes in the client code, the server code, or the network interface between them. The system performs three performance management tasks: resource allocation, load balancing, and server overload protection. We use two nested levels of management mechanism. The inner level centers on queuing and scheduling of request messages. The outer level is a feedback control loop that periodically adjusts the scheduling weights and server allocations of the inner level. The feedback controller is based on an approximate first-principles model of the system, with parameters derived from continuous monitoring. We focus on SOAP-based web services. We report experimental results that show the dynamic behavior of the system.
    corecore