4 research outputs found

    When less is more: heterogeneity in grass patch height supports herbivores in counter-intuitive ways

    No full text
    Herbivores are an integral part of the African landscape and have evolved with the vegetation to create the savanna landscape. Managers of these landscapes can benefit from a better understanding of how indigenous herbivores use the landscape to which they are adapted. In this study we observed which patches were frequently utilised, by doing regular monthly road counts, grass height observations and dung counts on selected short grass patches in the Kruger National Park. Smaller-framed impala and blue wildebeest (meso-herbivores) were most regularly seen on these nutritious patches, while from dung deposits it was clear that the even larger-framed buffalo (mega-herbivores) spent time there. This preference can be explained by considering the nutritional needs and food intake of the herbivores. Smaller-framed herbivores seem to be able to satisfy their dietary requirements on the high-quality forage patches, while larger-framed herbivores seem to supplement the quality forage by also spending foraging time on areas of higher grass biomass. From this insight we propose that range management should take herbivore preferences into account and allow herbivores to select and concentrate their foraging on the most nutritious forage. This approach is likely to decrease inputs while allowing animals to maintain or increase production.Keywords: diet selection, grazing management, forage quality, nutritio

    Evaluating herbivore management outcomes and associated vegetation impacts

    No full text
    African savannas are characterised by temporal and spatial fluxes that are linked to fluxes in herbivore populations and vegetation structure and composition. We need to be concerned about these fluxes only when management actions cause the system to shift towards a less desired state. Large herbivores are a key attribute of African savannas and are important for tourism and biodiversity. Large protected areas such as the Kruger National Park (KNP) manage for high biodiversity as the desired state, whilst private protected areas, such as those adjacent to the KNP, generally manage for high income. Biodiversity, sustainability and economic indicators are thus required to flag thresholds of potential concern (TPCs) that may result in a particular set of objectives not being achieved. In large conservation areas such as the KNP, vegetation changes that result from herbivore impact, or lack thereof, affect biodiversity and TPCs are used to indicate unacceptable change leading to a possible loss of biodiversity; in private protected areas the loss of large herbivores is seen as an important indicator of economic loss. Therefore, the first-level indicators aim to evaluate the forage available to sustain grazers without deleteriously affecting the vegetation composition, structure and basal cover. Various approaches to monitoring for these indicators were considered and the importance of the selection of sites that are representative of the intensity of herbivore use is emphasised. The most crucial step in the adaptive management process is the feedback of information to inform management decisions and enable learning. Feedback loops tend to be more efficient where the organisation’s vision is focused on, for example, economic gain, than in larger protected areas, such as the KNP, where the vision to conserve biodiversity is broader and more complex. Conservation implications: In rangeland, optimising herbivore numbers to achieve the management objectives without causing unacceptable or irreversible change in the vegetation is challenging. This manuscript explores different avenues to evaluate herbivore impact and the outcomes of management approaches that may affect vegetation

    bi4africa dataset - open source

    No full text
    The bii4africa dataset is presented in a multi-spreadsheet .ods file. The raw data spreadsheet (‘Scores_Raw’) includes 31,313 individual expert estimates of the impact of a sub-Saharan African land use on a species response group of terrestrial vertebrates or vascular plants. Estimates are reported as intactness scores - the remaining proportion of an ‘intact’ reference (pre-industrial or contemporary wilderness area) population of a species response group in a land use, on a scale from 0 (no individuals remain) through 0.5 (half the individuals remain), to 1 (same as the reference population) and, in limited cases, to 2 (two or more times the reference population). For species that thrive in human-modified landscapes, scores could be greater than 1 but not exceeding 2 to avoid extremely large scores biasing aggregation exercises. Expert comments are included alongside respective estimates

    bii4africa dataset

    No full text
    The bii4africa dataset is presented in a multi-spreadsheet .xlsx file. The raw data spreadsheet (‘Scores_Raw’) includes 31,313 individual expert estimates of the impact of a sub-Saharan African land use on a species response group of terrestrial vertebrates or vascular plants. Estimates are reported as intactness scores - the remaining proportion of an ‘intact’ reference (pre-industrial or contemporary wilderness area) population of a species response group in a land use, on a scale from 0 (no individuals remain) through 0.5 (half the individuals remain), to 1 (same as the reference population) and, in limited cases, to 2 (two or more times the reference population). For species that thrive in human-modified landscapes, scores could be greater than 1 but not exceeding 2 to avoid extremely large scores biasing aggregation exercises. Expert comments are included alongside respective estimates
    corecore