6 research outputs found

    Jammed spin liquid in the bond-disordered kagome Heisenberg antiferromagnet

    Get PDF
    We study a class of continuous spin models with bond disorder including the kagome Heisenberg antiferromagnet. For weak disorder strength, we find discrete ground states whose number grows exponentially with system size. These states do not exhibit zero-energy excitations characteristic of highly frustrated magnets but instead are local minima of the energy landscape. This represents a spin liquid version of the phenomenon of jamming familiar from granular media and structural glasses. Correlations of this jammed spin liquid, which upon increasing the disorder strength gives way to a conventional spin glass, may be algebraic (Coulomb-type) or exponential.Physic

    Dynamics and energy landscape of the jammed spin-liquid

    Get PDF
    We study the low temperature static and dynamical properties of the classical bond-disordered antiferromagnetic Heisenberg model on the kagome lattice. This model has recently been shown to host a new type of spin liquid exhibiting an exponentially large number of discrete ground states. Surprisingly, despite the rigidity of the groundstates, we establish the vanishing of the corresponding spin stiffness. Locally, the low-lying eigenvectors of the Hessian appear to exhibit a fractal inverse participation ratio. Its spin dynamics resembles that of Coulomb Heisenberg spin liquids, but exhibits a new low-temperature dynamically arrested regime, which however gets squeezed out with increasing system size. We also probe the properties of the energy landscape underpinning this behaviour, and find energy barriers between distinct ground states vanishing with system size. In turn the local minima appear highly connected and the system tends to lose memory of its inital state in an accumulation of soft directions.Physic

    Field-induced States and Excitations in the Quasicritical Spin-1/2 Chain Linarite

    Get PDF
    The mineral linarite, PbCuSO4_4(OH)2_2, is a spin 1/2 chain with frustrating nearest neighbor ferromagnetic and next-nearest neighbor antiferromagnetic exchange interactions. Our inelastic neutron scattering experiments performed above the saturation field establish that the ratio between these exchanges is such that linarite is extremely close to the quantum critical point between spin-multipolar phases and the ferromagnetic state. However, the measured complex magnetic phase diagram depends strongly on the magnetic field direction. The field-dependent phase sequence is explained by our classical simulations of a nearly critical model with tiny orthorhombic exchange anisotropy. The simulations also capture qualitatively the measured variations of the wave vector as well as the staggered and the uniform magnetizations in an applied field

    High-Angular Momentum Excitations in Collinear Antiferromagnet FePS<sub>3</sub>

    No full text
    We report on magneto-optical studies of the quasi-two-dimensional van der Waals antiferromagnet FePS3. Our measurements reveal an excitation that closely resembles the antiferromagnetic resonance mode typical of easy-axis antiferromagnets; nevertheless, it displays an unusual, four-times larger Zeeman splitting in an applied magnetic field. We identify this excitation with an |Sz| = 4 multipolar magnona single-ion 4-magnon bound statethat corresponds to a full reversal of a single magnetic moment of the Fe2+ ion. We argue that condensation of multipolar magnons in large-spin materials with a strong magnetic anisotropy can produce new exotic states
    corecore