131 research outputs found

    Production, Uses, and Ancestry of an Oilseed Crop, Perilla frutescens (L.) Britton var. frutescens in Japan: An Overview

    Get PDF
    Perilla frutescens (L.) Britton var. frutescens has been cultivated as a traditional oilseed crop in Japan. Perilla seed oil was once used for industrial products such as fuel for lamps, waterproofing agent, and lacquered wares. Nowadays, it is commonly utilized to add flavor to cooking, and the seeds are also ground and powdered for use in traditional foods as flavoring. Perilla oil has recently received the attention of Japanese consumers because it is a good source of health benefit compounds including unsaturated fatty acids (e.g., α-linolenic acid) and bioactive flavonoids (e.g., luteolin). In the country, however, there has been little effort in improving the production potential of the crop through plant breeding. The present review is an attempt to provide the current information about the production, uses and possible ancestry of P. frutescens var. frutescens in Japan. The paper also focuses on the problems and prospects of genetic improvement in this cro

    Production, uses and cultivars of common buckwheat in Japan: An overview

    Get PDF
    Common buckwheat (Fagopyrum esculentum Moench) has attracted much attention due to its high nutritional value and medicinal properties. The crop has a long history of cultivation in Japan, and today, it is used mostly for manufacturing soba noodles which are quite popular in Japanese cuisine. Cultivation of common buckwheat in the country decreased gradually until the 1970’s, but has started to increase again in recent years. In this paper, we provide an overview of common buckwheat production in Japan with emphasis on the agronomic characteristics of representative Japanese cultivars and landraces.</p

    Current Performance and On-Going Improvements of the 8.2 m Subaru Telescope

    Full text link
    An overview of the current status of the 8.2 m Subaru Telescope constructed and operated at Mauna Kea, Hawaii, by the National Astronomical Observatory of Japan is presented. The basic design concept and the verified performance of the telescope system are described. Also given are the status of the instrument package offered to the astronomical community, the status of operation, and some of the future plans. The status of the telescope reported in a number of SPIE papers as of the summer of 2002 are incorporated with some updates included as of 2004 February. However, readers are encouraged to check the most updated status of the telescope through the home page, http://subarutelescope.org/index.html, and/or the direct contact with the observatory staff.Comment: 18 pages (17 pages in published version), 29 figures (GIF format), This is the version before the galley proo

    Ablation of TSC2 Enhances Insulin Secretion by Increasing the Number of Mitochondria through Activation of mTORC1

    Get PDF
    ) mice. The present study examines the effects of TSC2 ablation on insulin secretion from pancreatic beta cells. mice and TSC2 knockdown insulin 1 (INS-1) insulinoma cells treated with small interfering ribonucleic acid were used to investigate insulin secretion, ATP content and the expression of mitochondrial genes. mice exhibit hyperinsulinemia due to an increase in the number of mitochondria as well as enlargement of individual beta cells via activation of mTORC1.Activation of mTORC1 by TSC2 ablation increases mitochondrial biogenesis and enhances insulin secretion from pancreatic beta cells

    Synthesis of donor–acceptor chromophores by the [2 + 2] cycloaddition of arylethynyl-2H-cyclohepta[b]furan-2-ones with 7,7,8,8-tetracyanoquinodimethane

    Get PDF
    Arylethynyl-2H-cyclohepta[b]furan-2-ones reacted with 7,7,8,8-tetracyanoquinodimethane (TCNQ) in a formal [2 + 2] cycloaddition reaction, followed by ring opening of the initially formed cyclobutene derivatives, to afford the corresponding dicyanoquinodimethane (DCNQ) chromophores in excellent yields. The intramolecular charge-transfer (ICT) interactions between the 2H-cyclohepta[b]furan-2-one ring and DCNQ acceptor moiety were investigated by UV/Vis spectroscopy and theoretical calculations. The redox behavior of the novel DCNQ derivatives was examined by cyclic voltammetry (CV) and differential pulse voltammetry (DPV), which revealed their multistep electrochemical reduction properties depended on the number of DCNQ units in the molecule. Moreover, a significant color change was observed by visible spectroscopy under electrochemical reduction conditions.ArticleORGANIC & BIOMOLECULAR CHEMISTRY. 10(12):2431-2438 (2012)journal articl

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The Owen mitochondrial genome in sugar beet (Beta vulgaris L.) : possible mechanisms of extensive rearrangements and the origin of the mitotype-unique regions

    Get PDF
    The mitochondrial genomes of normal fertile and male-sterile (Owen CMS) cytoplasms of sugar beet are highly rearranged relative to each other and dozens of inversional recombinations and other reshuffling events must be postulated to interconvert the two genomes. In this paper, a comparative analysis of the entire nucleotide sequences of the two genomes revealed that most of the inversional recombinations involved short repeats present at their endpoints. Attention was also focused on the origin of the Owen CMS-unique mtDNA regions, which occupy 13.6% of the Owen genome and are absent from the normal mtDNA. BLAST search was performed to assign the sequences, and as a result, 7.6% of the unique regions showed significant homology to previously determined mitochondrial sequences, 17.9% to nuclear DNA, 4.6% to mitochondrial episomes, and 0.1% to plastid DNA. Southern blot analysis revealed that additional sequences of nuclear origin may be included within the unique regions. We also found that the copies of many short repeat families are scattered throughout the unique regions. This suggests that, in addition to the incorporation of foreign DNAs, extensive duplication of short repetitive sequences and continued scrambling of mtDNA sequences may be implicated in the generation of the Owen CMS-unique regions
    corecore