38 research outputs found

    The interactive effects of environmental gradient and dispersal shape spatial phylogenetic patterns

    Get PDF
    IntroductionThe emergence and maintenance of biodiversity include interacting environmental conditions, organismal adaptation to such conditions, and dispersal. To understand and quantify such ecological, evolutionary, and spatial processes, observation and interpretation of phylogenetic relatedness across space (e.g., phylogenetic beta diversity) is arguably a way forward as such patterns contain signals from all the processes listed above. However, it remains challenging to extract information about complex eco-evolutionary and spatial processes from phylogenetic patterns.MethodsWe link environmental gradients and organismal dispersal with phylogenetic beta diversity using a trait-based and eco-evolutionary model of diversification along environmental gradients. The combined effect of the environment and dispersal leads to distinct phylogenetic patterns between subsets of species and across geographical distances.Results and discussionSteep environmental gradients combined with low dispersal lead to asymmetric phylogenies, a high phylogenetic beta diversity, and the phylogenetic diversity between communities increases linearly along the environmental gradient. High dispersal combined with a less steep environmental gradient leads to symmetric phylogenies, low phylogenetic beta diversity, and the phylogenetic diversity between communities along the gradient increases in a sigmoidal form. By disentangling the eco-evolutionary mechanisms that link such interacting environment and dispersal effects and community phylogenetic patterns, our results improve understanding of biodiversity in general and help interpretation of observed phylogenetic beta diversity

    Är verkligt vĂ€rde verkligen det verkliga vĂ€rdet? : En studie av svenska fastighetsföretags upp och nedskrivningar.

    No full text
    Vi befinner oss just nu i en lÄgkonjunktur och detta pÄverkar det mesta i vÄrt samhÀlle. Arbetslösheten stiger och fastighetspriserna sjunker. Företag med stora tillgÄngar i fastigheter vÀrderade till verkligt vÀrde kan tvingas till resultatsÀnkande nedskrivningar. Majoriteten av tillgÄngarna i fastighetsföretag utgörs av förvaltningsfastigheter som alltsÄ kan bli föremÄl för nedskrivningar. Med hjÀlp av olika former av earnings management kan företagen minska eller öka effekterna av en lÄg- respektive högkonjunktur. Problemformuleringen vi utgÄr ifrÄn Àr: Hur pÄverkas fastighetsföretagens benÀgenhet till upp/nedskrivningar av sin finansiella stÀllning samt konjunkturen? Studien baseras pÄ en kvantitativ undersökning av alla svenska börsnoterade fastighetsföretag och inkluderar Ären frÄn och med 2005. Med hjÀlp av en statistisk undersökning analyseras bÄde interna och externa faktorer som kan tÀnkas pÄverka företagens upp- och nedskrivningar. Tidigare studier visar till exempel att skuldsÀttningsgraden och förÀndring i BNP har en pÄverkan pÄ företagens upp- och nedskrivningar. VÄr studie granskar, förutom skuldsÀttningsgraden, Àven om ROE, ROA, rörelsemarginalen, Market/Book-kvoten samt konjunkturen kan ha nÄgon pÄverkan. De hypoteser vi utgÄr ifrÄn Àr att fastighetsföretag med svag finansiell stÀllning troligen Àr extra försiktiga med att göra nedskrivningar nÀr tiderna Àr sÀmre. NÀr konjunkturen vÀnder uppÄt Àr det sannolikt de finansiellt svaga företagen som försöker maximera uppskrivningarna. Analysen genomfördes med hjÀlp av statistikprogrammet Minitab i vilket vi gjorde spridningsdiagram för att visuellt undersöka linjÀra samband samt regressionsanalyser för att undersöka hur starka dessa eventuella samband Àr. Det starkaste sambandet hittades mellan konjunkturen och vÀrderingen av förvaltningsfastigheterna. Detta var ocksÄ det enda sambandet vi med statistisk signifikans kan bekrÀfta. MÄtten pÄ företagens finansiella styrka verkar inte pÄverka företagens benÀgenhet att göra upp och nedskrivningar i den mÄn vi utgick ifrÄn i vÄra hypoteser. Studien resulterade inte i nÄgra statistiska bevis för att nÄgon form av earnings management förekommer hos fastighetsföretagen vid vÀrdering av fastighetsbestÄndet till verkligt vÀrde. Dock kan vi inte heller utesluta att sÄ Àr fallet

    Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)

    No full text
    Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as a mechanistic and causal link between process and pattern is often lacking, and evolutionary processes and trophic interactions are ignored. Here, we revisit the current knowledge on community assembly across scales and, in line with several reviews that have outlined challenges associated with current inference techniques, we identify a discrepancy between the current paradigm of eco-evolutionary community assembly and current inference techniques that focus mainly on competition and habitat filtering. We argue that trait-based dynamic eco-evolutionary models in combination with recently developed model fitting and model evaluation techniques can provide avenues for more accurate, reliable, and inclusive inference. To exemplify, we implement a trait-based, spatially explicit eco-evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources. Through a case study on inference of prey and predator niche width in an eco-evolutionary context, we demonstrate how inclusive and mechanistic approaches-eco-evolutionary modelling and Approximate Bayesian Computation (ABC)-can enable inference of assembly processes that have been largely neglected by traditional techniques despite the ubiquity of such processes. Much literature points to the limitations of current inference techniques, but concrete solutions to such limitations are few. Many of the challenges associated with novel inference techniques are, however, already to some extent resolved in other fields and thus ready to be put into action in a more formal way for inferring processes of community assembly from signals in various data sources

    The interactive effects of environmental gradient and dispersal shape spatial phylogenetic patterns

    No full text
    Introduction: The emergence and maintenance of biodiversity include interacting environmental conditions, organismal adaptation to such conditions, and dispersal. To understand and quantify such ecological, evolutionary, and spatial processes, observation and interpretation of phylogenetic relatedness across space (e.g., phylogenetic beta diversity) is arguably a way forward as such patterns contain signals from all the processes listed above. However, it remains challenging to extract information about complex eco-evolutionary and spatial processes from phylogenetic patterns. Methods: We link environmental gradients and organismal dispersal with phylogenetic beta diversity using a trait-based and eco-evolutionary model of diversification along environmental gradients. The combined effect of the environment and dispersal leads to distinct phylogenetic patterns between subsets of species and across geographical distances. Results and discussion: Steep environmental gradients combined with low dispersal lead to asymmetric phylogenies, a high phylogenetic beta diversity, and the phylogenetic diversity between communities increases linearly along the environmental gradient. High dispersal combined with a less steep environmental gradient leads to symmetric phylogenies, low phylogenetic beta diversity, and the phylogenetic diversity between communities along the gradient increases in a sigmoidal form. By disentangling the eco-evolutionary mechanisms that link such interacting environment and dispersal effects and community phylogenetic patterns, our results improve understanding of biodiversity in general and help interpretation of observed phylogenetic beta diversity

    Inferring community assembly processes from macroscopic patterns using dynamic eco-evolutionary models and Approximate Bayesian Computation (ABC)

    Get PDF
    Statistical techniques exist for inferring community assembly processes from community patterns. Habitat filtering, competition, and biogeographical effects have, for example, been inferred from signals in phenotypic and phylogenetic data. The usefulness of current inference techniques is, however, debated as a mechanistic and causal link between process and pattern is often lacking, and evolutionary processes and trophic interactions are ignored. Here, we revisit the current knowledge on community assembly across scales and, in line with several reviews that have outlined challenges associated with current inference techniques, we identify a discrepancy between the current paradigm of eco‐evolutionary community assembly and current inference techniques that focus mainly on competition and habitat filtering. We argue that trait‐based dynamic eco‐evolutionary models in combination with recently developed model fitting and model evaluation techniques can provide avenues for more accurate, reliable, and inclusive inference. To exemplify, we implement a trait‐based, spatially explicit eco‐evolutionary model and discuss steps of model modification, fitting, and evaluation as an iterative approach enabling inference from diverse data sources. Through a case study on inference of prey and predator niche width in an eco‐evolutionary context, we demonstrate how inclusive and mechanistic approaches—eco‐evolutionary modelling and Approximate Bayesian Computation (ABC)—can enable inference of assembly processes that have been largely neglected by traditional techniques despite the ubiquity of such processes. Much literature points to the limitations of current inference techniques, but concrete solutions to such limitations are few. Many of the challenges associated with novel inference techniques are, however, already to some extent resolved in other fields and thus ready to be put into action in a more formal way for inferring processes of community assembly from signals in various data sources

    Microplastic Emissions from Paint

    No full text
    Swedish Environmental Emissions Data (SMED) is a collaboration between IVL Swedish Environmental Research Institute, SCB Statistics Sweden, the Swedish University of Agricultural Sciences (SLU), and the Swedish Meteorological and Hydrological Institute (SMHI). Recent attention has been focused on the potential environmental and health impacts of microplastics, but there is still significant knowledge missing regarding these impacts. The Swedish Environmental Protection Agency has is responsible for the national plastics coordination, in which one aim is to develop new knowledge in relation to important sources of microplastic emissions. Within the scope of this work, SMED has been assigned to review the role of paints as a source of microplastics and suggest feasible indicators to monitor annual release from paints. This report aims to compile existing knowledge of various paint and coating systems and their contribution to microplastic emissions. Sectors responsible for the highest emissions have been identified to facilitate prioritization of actions to lower microplastic emissions from paints. Additionally, this report proposes a key indicator for tracking annual national levels of microplastic emissions from paints. The report concludes that the sectors with the greatest risk for microplastic emissions from paint include architecture, antifouling and hull coatings, coatings used in general industry, and the automotive industry. In Sweden, data on the volume of architectural paints and antifouling/marine coatings placed on the market can be readily obtained from the Swedish product registry. However, information regarding paint usage in general industry and the automotive sector is limited because coatings are often applied overseas prior to import into Sweden and many of the products coated in Sweden are exported abroad. This project has developed a simplified method to calculate annual microplastic emissions from paint in Sweden including emissions from architectural and marine sectors. Emission factors for different parts of a paint’s lifecycle were included and a range of solid contents based on a set of commercially available paints were used to provide a worst case, best case, and average case. By using this method, release of microplastics from architectural paint was estimated at 209 to 3 700 tons per year and release from antifouling and hull coatings at 30 to 308 tons per year in Sweden. Comparing these numbers to estimated quantities of microplastic emissions from other sources, coatings are a substantial source of microplastics. Wear from road traffic is regarded as the largest source of microplastics in Sweden, accounting for about 7 674 tonnes per year. It has been estimated that the amount of synthetic fibres released from textiles is between 8 to 956 tons annually and that microplastic emissions from industrial plastic pellet production is between 12 to 235 tons annually (Magnusson et al., 2016). Since coatings typically need to meet various technical requirements to protect the underlying substrate from corrosion and wear, efforts to reduce microplastic releases from paint and coatings might incur higher costs and obstacles than efforts to address other microplastic sources such as littering. For future monitoring of microplastic emission from paint in Sweden, the project recommends the amounts of architectural and boat paints including antifouling coatings placed on the Swedish market annually (expressed in kg of dry weight) as indicators. De potentiella miljö- och hĂ€lsoeffekterna av mikroplaster har den senaste tiden uppmĂ€rksammats, men det finns fortfarande betydande kunskapsluckor. NaturvĂ„rdsverket ansvarar för den nationella plastsamordningen inom vilket det ingĂ„r att öka kunskap. Detta kan t.ex. inkludera att identifiera viktiga kĂ€llor till utslĂ€pp av mikroplast och att arbeta för att minska utslĂ€ppen av mikroplast frĂ„n dessa kĂ€llor. SMED har inom ramen för detta arbete fĂ„tt i uppdrag av NaturvĂ„rdsverket att utreda fĂ€rg som kĂ€lla till mikroplast och föreslĂ„ indikatorer för att följa upp Ă„rliga utslĂ€ppsmĂ€ngder. Denna rapport syftar till att sammanstĂ€lla befintlig kunskap om olika fĂ€rg- och ytbehandlingssystem och deras bidrag till mikroplastutslĂ€pp. Sektorer som ansvarar för de största utslĂ€ppen har identifierats för att möjliggöra prioritering av Ă„tgĂ€rder för att minska mikroplastutslĂ€ppen frĂ„n fĂ€rger. Dessutom föreslĂ„r rapporten en indikator för att följa upp de Ă„rliga nationella utslĂ€ppen av mikroplastutslĂ€pp frĂ„n fĂ€rger. SMED drar slutsatsen att de anvĂ€ndningsomrĂ„den dĂ€r det rĂ„der störst risk för utslĂ€pp av mikroplast frĂ„n fĂ€rg inkluderar: husfĂ€rg, bĂ„tfĂ€rg inklusive antifouling (pĂ„vĂ€xthindrande system) för bĂ„tar, ytbehandlingar inom industrin och speciellt fordonstillverkning. I Sverige kan uppgifter om volym husfĂ€rg och bĂ„tfĂ€rg inklusive antifouling som sĂ€tts pĂ„ marknaden erhĂ„llas frĂ„n det svenska produktregistret. Information om fĂ€rganvĂ€ndning inom industrin och fordonssektorn Ă€r dock begrĂ€nsad pĂ„ grund av att en betydande mĂ€ngd av dessa ytbehandlingar sker utomlands och mĂ„nga av de produkter som behandlas i Sverige exporteras utomlands. Projektet utvecklade en förenklad metod för att berĂ€kna Ă„rliga utslĂ€pp av mikroplast frĂ„n fĂ€rg i Sverige inom byggnads- och den marina sektorn. Emissionsfaktorer för olika delar av fĂ€rgens livscykel inkluderades och ett spann för det fasta innehĂ„llet i fĂ€rgen togs fram baserade pĂ„ en sammanstĂ€llning av kommersiellt tillgĂ€ngliga fĂ€rger, vilka anvĂ€ndes för att ge ett vĂ€rsta fall, bĂ€sta fall samt ett genomsnitt. Genom att anvĂ€nda denna metod uppskattades utslĂ€ppen av mikroplast frĂ„n husfĂ€rg till 209 – 3 700 ton/Ă„r och frĂ„n bĂ„tfĂ€rg inklusive antifouling till 30-308 ton/Ă„r i Sverige. Genom att sĂ€tta dessa siffror i relation till uppskattade mĂ€ngder mikroplastutslĂ€pp frĂ„n annan verksamhet framgĂ„r att fĂ€rg Ă€r en betydande kĂ€lla till mikroplast i Sverige. Slitage frĂ„n vĂ€gtrafiken anses vara den största kĂ€llan till mikroplastutslĂ€pp i Sverige med cirka 7 674 (ton/Ă„r) och man har uppskattat att utslĂ€pp av syntetfibrer frĂ„n textilier Ă€r mellan 8 – 956 ton per Ă„r och utslĂ€pp frĂ„n industriproduktion av plastpellets uppskattades till mellan 12 – 235 ton i samma rapport (Magnusson et al., 2016). Med tanke pĂ„ att fĂ€rgsystem vanligtvis mĂ„ste uppfylla olika tekniska krav för att skydda det underliggande underlaget frĂ„n korrosion och slitage och det ofta saknas bra alternativ, kan Ă„tgĂ€rder för att minska mikroplastutslĂ€pp frĂ„n fĂ€rg medföra högre kostnader och större tekniska utmaningar jĂ€mfört med att minska mikroplastspridningen frĂ„n andra kĂ€llor sĂ„som genom minskad nedskrĂ€pning av makroplast. För att följa upp mikroplastspridning frĂ„n fĂ€rg i Sverige rekommenderade projektet indikatorer för uppföljning bestĂ„ende av mĂ€ngden husfĂ€rg och bĂ„tfĂ€rg inklusive antifouling som slĂ€pps ut pĂ„ den svenska marknaden Ă„rligen uttryckt i kg torrvikt.

    Microplastic Emissions from Paint

    No full text
    Swedish Environmental Emissions Data (SMED) is a collaboration between IVL Swedish Environmental Research Institute, SCB Statistics Sweden, the Swedish University of Agricultural Sciences (SLU), and the Swedish Meteorological and Hydrological Institute (SMHI). Recent attention has been focused on the potential environmental and health impacts of microplastics, but there is still significant knowledge missing regarding these impacts. The Swedish Environmental Protection Agency has is responsible for the national plastics coordination, in which one aim is to develop new knowledge in relation to important sources of microplastic emissions. Within the scope of this work, SMED has been assigned to review the role of paints as a source of microplastics and suggest feasible indicators to monitor annual release from paints. This report aims to compile existing knowledge of various paint and coating systems and their contribution to microplastic emissions. Sectors responsible for the highest emissions have been identified to facilitate prioritization of actions to lower microplastic emissions from paints. Additionally, this report proposes a key indicator for tracking annual national levels of microplastic emissions from paints. The report concludes that the sectors with the greatest risk for microplastic emissions from paint include architecture, antifouling and hull coatings, coatings used in general industry, and the automotive industry. In Sweden, data on the volume of architectural paints and antifouling/marine coatings placed on the market can be readily obtained from the Swedish product registry. However, information regarding paint usage in general industry and the automotive sector is limited because coatings are often applied overseas prior to import into Sweden and many of the products coated in Sweden are exported abroad. This project has developed a simplified method to calculate annual microplastic emissions from paint in Sweden including emissions from architectural and marine sectors. Emission factors for different parts of a paint’s lifecycle were included and a range of solid contents based on a set of commercially available paints were used to provide a worst case, best case, and average case. By using this method, release of microplastics from architectural paint was estimated at 209 to 3 700 tons per year and release from antifouling and hull coatings at 30 to 308 tons per year in Sweden. Comparing these numbers to estimated quantities of microplastic emissions from other sources, coatings are a substantial source of microplastics. Wear from road traffic is regarded as the largest source of microplastics in Sweden, accounting for about 7 674 tonnes per year. It has been estimated that the amount of synthetic fibres released from textiles is between 8 to 956 tons annually and that microplastic emissions from industrial plastic pellet production is between 12 to 235 tons annually (Magnusson et al., 2016). Since coatings typically need to meet various technical requirements to protect the underlying substrate from corrosion and wear, efforts to reduce microplastic releases from paint and coatings might incur higher costs and obstacles than efforts to address other microplastic sources such as littering. For future monitoring of microplastic emission from paint in Sweden, the project recommends the amounts of architectural and boat paints including antifouling coatings placed on the Swedish market annually (expressed in kg of dry weight) as indicators. De potentiella miljö- och hĂ€lsoeffekterna av mikroplaster har den senaste tiden uppmĂ€rksammats, men det finns fortfarande betydande kunskapsluckor. NaturvĂ„rdsverket ansvarar för den nationella plastsamordningen inom vilket det ingĂ„r att öka kunskap. Detta kan t.ex. inkludera att identifiera viktiga kĂ€llor till utslĂ€pp av mikroplast och att arbeta för att minska utslĂ€ppen av mikroplast frĂ„n dessa kĂ€llor. SMED har inom ramen för detta arbete fĂ„tt i uppdrag av NaturvĂ„rdsverket att utreda fĂ€rg som kĂ€lla till mikroplast och föreslĂ„ indikatorer för att följa upp Ă„rliga utslĂ€ppsmĂ€ngder. Denna rapport syftar till att sammanstĂ€lla befintlig kunskap om olika fĂ€rg- och ytbehandlingssystem och deras bidrag till mikroplastutslĂ€pp. Sektorer som ansvarar för de största utslĂ€ppen har identifierats för att möjliggöra prioritering av Ă„tgĂ€rder för att minska mikroplastutslĂ€ppen frĂ„n fĂ€rger. Dessutom föreslĂ„r rapporten en indikator för att följa upp de Ă„rliga nationella utslĂ€ppen av mikroplastutslĂ€pp frĂ„n fĂ€rger. SMED drar slutsatsen att de anvĂ€ndningsomrĂ„den dĂ€r det rĂ„der störst risk för utslĂ€pp av mikroplast frĂ„n fĂ€rg inkluderar: husfĂ€rg, bĂ„tfĂ€rg inklusive antifouling (pĂ„vĂ€xthindrande system) för bĂ„tar, ytbehandlingar inom industrin och speciellt fordonstillverkning. I Sverige kan uppgifter om volym husfĂ€rg och bĂ„tfĂ€rg inklusive antifouling som sĂ€tts pĂ„ marknaden erhĂ„llas frĂ„n det svenska produktregistret. Information om fĂ€rganvĂ€ndning inom industrin och fordonssektorn Ă€r dock begrĂ€nsad pĂ„ grund av att en betydande mĂ€ngd av dessa ytbehandlingar sker utomlands och mĂ„nga av de produkter som behandlas i Sverige exporteras utomlands. Projektet utvecklade en förenklad metod för att berĂ€kna Ă„rliga utslĂ€pp av mikroplast frĂ„n fĂ€rg i Sverige inom byggnads- och den marina sektorn. Emissionsfaktorer för olika delar av fĂ€rgens livscykel inkluderades och ett spann för det fasta innehĂ„llet i fĂ€rgen togs fram baserade pĂ„ en sammanstĂ€llning av kommersiellt tillgĂ€ngliga fĂ€rger, vilka anvĂ€ndes för att ge ett vĂ€rsta fall, bĂ€sta fall samt ett genomsnitt. Genom att anvĂ€nda denna metod uppskattades utslĂ€ppen av mikroplast frĂ„n husfĂ€rg till 209 – 3 700 ton/Ă„r och frĂ„n bĂ„tfĂ€rg inklusive antifouling till 30-308 ton/Ă„r i Sverige. Genom att sĂ€tta dessa siffror i relation till uppskattade mĂ€ngder mikroplastutslĂ€pp frĂ„n annan verksamhet framgĂ„r att fĂ€rg Ă€r en betydande kĂ€lla till mikroplast i Sverige. Slitage frĂ„n vĂ€gtrafiken anses vara den största kĂ€llan till mikroplastutslĂ€pp i Sverige med cirka 7 674 (ton/Ă„r) och man har uppskattat att utslĂ€pp av syntetfibrer frĂ„n textilier Ă€r mellan 8 – 956 ton per Ă„r och utslĂ€pp frĂ„n industriproduktion av plastpellets uppskattades till mellan 12 – 235 ton i samma rapport (Magnusson et al., 2016). Med tanke pĂ„ att fĂ€rgsystem vanligtvis mĂ„ste uppfylla olika tekniska krav för att skydda det underliggande underlaget frĂ„n korrosion och slitage och det ofta saknas bra alternativ, kan Ă„tgĂ€rder för att minska mikroplastutslĂ€pp frĂ„n fĂ€rg medföra högre kostnader och större tekniska utmaningar jĂ€mfört med att minska mikroplastspridningen frĂ„n andra kĂ€llor sĂ„som genom minskad nedskrĂ€pning av makroplast. För att följa upp mikroplastspridning frĂ„n fĂ€rg i Sverige rekommenderade projektet indikatorer för uppföljning bestĂ„ende av mĂ€ngden husfĂ€rg och bĂ„tfĂ€rg inklusive antifouling som slĂ€pps ut pĂ„ den svenska marknaden Ă„rligen uttryckt i kg torrvikt.

    Simulation Framework for Collaborative Fusion Research

    No full text
    Abstract- This paper presents a case study of a Modelling and Simulation (M&S) Testbed Framework that has been proposed to facilitate research activities in sensor technology, fusion and decision support. The framework facilitates research activities through the creation and sharing of common resources like scenario generators, simulation engines, sensor/target models and visualisation tools. With this framework, common resources can be reused in a “plug and play ” manner and to facilitate the development of larger demonstrators. Two research institutes collaborated in the development of this framework, which consists of a suite of modular components and a standardised interface between them. The simulation testbed was successfully tested using a common scenario and fusion federates for tracking and classification of targets. The fusion federates consist of ground sensor networks (or network of fusion nodes using ground sensors) built independently from the two research institutes
    corecore