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Abstract
1.	 Statistical	 techniques	 exist	 for	 inferring	 community	 assembly	 processes	 from	
community	patterns.	Habitat	 filtering,	competition,	and	biogeographical	effects	
have,	 for	 example,	 been	 inferred	 from	 signals	 in	 phenotypic	 and	 phylogenetic	
data.	The	usefulness	of	 current	 inference	 techniques	 is,	however,	debated	as	a	
mechanistic	 and	 causal	 link	 between	 process	 and	 pattern	 is	 often	 lacking,	 and	
evolutionary	processes	and	trophic	interactions	are	ignored.

2.	 Here,	we	revisit	the	current	knowledge	on	community	assembly	across	scales	and,	
in	line	with	several	reviews	that	have	outlined	challenges	associated	with	current	
inference	techniques,	we	identify	a	discrepancy	between	the	current	paradigm	of	
eco-evolutionary	community	assembly	and	current	inference	techniques	that	focus	
mainly	on	competition	and	habitat	filtering.	We	argue	that	trait-based	dynamic	eco-
evolutionary	 models	 in	 combination	 with	 recently	 developed	 model	 fitting	 and	
model	evaluation	techniques	can	provide	avenues	for	more	accurate,	reliable,	and	
inclusive	inference.	To	exemplify,	we	implement	a	trait-based,	spatially	explicit	eco-
evolutionary	model	and	discuss	steps	of	model	modification,	fitting,	and	evaluation	
as	an	iterative	approach	enabling	inference	from	diverse	data	sources.

3.	 Through	a	case	study	on	inference	of	prey	and	predator	niche	width	in	an	eco-
evolutionary	 context,	 we	 demonstrate	 how	 inclusive	 and	 mechanistic	 ap-
proaches—eco-evolutionary	modelling	 and	Approximate	Bayesian	Computation	
(ABC)—can	 enable	 inference	of	 assembly	 processes	 that	 have	 been	 largely	 ne-
glected	by	traditional	techniques	despite	the	ubiquity	of	such	processes.

4.	 Much	literature	points	to	the	limitations	of	current	inference	techniques,	but	con-
crete	solutions	to	such	limitations	are	few.	Many	of	the	challenges	associated	with	
novel	inference	techniques	are,	however,	already	to	some	extent	resolved	in	other	
fields	and	thus	ready	to	be	put	into	action	in	a	more	formal	way	for	inferring	pro-
cesses	of	community	assembly	from	signals	in	various	data	sources.
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1  | INTRODUC TION

Community	assembly	processes	are	difficult	to	observe	in	the	field	
and	 revealing	 processes	 using	manipulative	 experiments	 is	 not	 al-
ways	 feasible.	Consequently,	 there	 is	 a	 considerable	need	 to	 infer	
processes	 from	 observations,	 such	 as	 trait	 distributions,	 species	
distributions,	 abundances,	 and	 phylogenies	 (Cadotte	 et	al.,	 2010;	
Mouquet	et	al.,	2012;	Pausas	&	Verdu,	2010;	Ricklefs	&	Travis,	1980).

Current	techniques	that	aim	to	infer	assembly	processes	from	
community	data	have	limitations.	Most	methods	consider	one	or	
a	 few	processes,	 although	 community	 assembly	 occurs	 via	mul-
tiple	 processes	 including	 eco-	evolutionary	 feedbacks	 (Leibold,	
Economo,	&	Peres-	Neto,	2010).	Patterns	observed	in	nature	may	
be	 consistent	 with	 multiple	 explanations	 (Vellend,	 2010)	 and	
current	 techniques	may	 thus	 fail	 to	 provide	 accurate	 inference,	
particularly	 if	 evolutionary	 processes	 and	 trophic	 interactions	
that	 are	 known	 to	 be	 important	 for	 macroevolution	 are	 poorly	
integrated	 (Pausas	 &	 Verdu,	 2010;	 Pontarp	 &	 Petchey,	 2016).	
Fundamental	 assumptions	 (e.g.,	 that	 competition	 will	 result	 in	
overdispersed	 trait	 distributions),	 on	 which	 current	 inference	
techniques	 often	 rely,	 have	 also	 been	 questioned	 (Mayfield	 &	
Levine,	2010).	Existing	inference	techniques	and	their	shortcom-
ings	are	covered	in	several	reviews	(Adler,	Fajardo,	Kleinhesselink,	
&	Kraft,	2013;	Cadotte	et	al.,	2010;	Cavender-	Bares,	Kozak,	Fine,	
&	 Kembel,	 2009;	 Emerson	 &	 Gillespie,	 2008;	 Mouquet	 et	al.,	
2012;	 Pausas	 &	 Verdu,	 2010;	 Vamosi,	 Heard,	 Vamosi,	 &	Webb,	
2009).	Here,	we	also	outline	the	most	relevant	features	of	some	of	
the	common	inference	techniques	(Tables	1–2	and	Appendix	S1),	
but	our	major	aim	is	to	motivate	transformation	and	improvement	
of	 the	practice	of	 inferring	process	 from	pattern	 in	ecology	and	
evolutionary	biology.

Such	 transformation,	 already	 underway,	 involves	 models	 of	
community	 assembly	 and	 we	 highlight	 specific	 components	 in-
cluding	 mechanistic	 modelling,	 parameter	 estimation,	 and	 model	

selection	(see	also	Cabral,	Valente,	&	Hartig,	2017;	Csillery,	Blum,	
Gaggiotti,	&	Francois,	2010;	van	der	Plas	et	al.,	2015).	We	present	
a	trait-	based	and	spatially	explicit	dynamic	eco-	evolutionary	com-
munity	model	of	adaptive	radiations	that	includes	intra-		and	inter-
specific	competition,	trophic	interactions,	dispersal	as	well	as	trait	
evolution	within	trophic	levels	and	co-	evolution	among	trophic	lev-
els.	We	use	this	model	in	a	case	study	to	illustrate	how	model	mod-
ification	(including	or	excluding	processes),	Approximate	Bayesian	
Computation	 (ABC)	 statistics,	 and	 multiple	 data	 sources	 can	 be	
used	 for	 inference.	We	 focus	 on	 predator–prey	 interactions	 and	
co-	evolution	processes	that	are	important	in	structuring	communi-
ties	but	are	largely	overlooked	in	traditionally	inference	techniques	
(Mouquet	et	al.,	2012).

2  | THE C A SE FOR INCLUSIVE AND 
MECHANISTIC PROCESS INFERENCE

Current	 inference	 techniques	 have	 both	 been	 praised	 and	 criti-
cized,	and	calls	for	more	inclusive	and	mechanistic	approaches	have	
been	made	due	to	challenges	associated	with:	(a)	basic	assumptions	
on	which	 the	methods	 rely,	 (b)	quantification	of	processes	acting	
in	 concert	 on	 different	 spatiotemporal	 scales,	 and	 (c)	 the	 identi-
fication	 of	 particular	 mechanisms	 that	 link	 process	 and	 pattern	
(Table	1,	 Appendix	 S1).	We	 now	 describe	 each	 category	 of	 chal-
lenges	in	turn.

2.1 | Basic assumptions of classical approaches

The	most	 common	 inference	 methods	 involve	 analysis	 of	 trait	 or	
phylogenetic	 community	 patterns,	 to	 find	 signals	 consistent	 with	
community	 	assembly	processes.	Community	overdispersion	or	un-
derdispersion	 has	 been	 determined	 by	 comparing	 the	 trait/phylo-
genetic	distribution	of	 the	 focal	community	with	 that	of	 randomly	

TABLE  1 Methods	that	infer	assembly	processes	from	community	patterns	(column	1)	and	the	information	that	they	consider	(columns	
2–5)

Input data Inference of processes

Reference exampleMethod Phenotype Phylogeny Abundance Environment Space Eco. Evo. Bio.geo

Analysis	of	pheno-
typic	structure

✓ ✓* ✓ Petchey	and	Gaston	
(2006)

Analysis	of	phyloge-
netic	structure

✓* ✓ ✓+ ✓* ✓ Webb	et	al.	(2002)

Fourth	corner ✓ ✓ ✓ ✓ ✓* ✓ ✓+ Dray	and	Legendre	
(2008)

Variance	partitioning ✓ ✓ ✓ ✓ ✓ Borcard,	Legendre	
and	Drapeau	
(1992)

Co-occurrence	
analysis

✓ ✓ (Harris,	2016)

Tick	mark	denotes	which	data/processes	are	considered	explicitly.	Superscript	denotes	data/processes	that	are	implicitly	considered	(*)	or	included	in	
extensions	of	the	basic	method	(+).	“Eco”	processes	include	habitat	filtering	and	competitive	exclusion;	“Evo”	includes	the	evolution	of	phenotypes,	for	
example,	via	character	displacement;	“Bio.	geog.”	includes	dispersal	limitation.
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assembled	null	 communities	and	 interpreted	as	competitive	exclu-
sion	 or	 habitat	 filtering	 respectively	 (Webb,	 Ackerly,	 McPeek,	 &	
Donoghue,	 2002).	 Other	 methods	 interpret	 correlation	 between	
traits	 and	 environmental	 variables	 as	 a	 signal	 of	 habitat	 filtering	
(Legendre,	Galzin,	 &	HarmelinVivien,	 1997;	Mouquet	 et	al.,	 2012).	
Furthermore,	variance	partitioning	aims	to	decompose	variation	 in	
community	composition	 into	fractions	determined	by	environmen-
tal	factors	and	spatial	location	to	reveal	environmental	filtering	and	
spatial	contingencies	(Borcard,	Legendre,	&	Drapeau,	1992).	A	fun-
damental	challenge	associated	with	the	methods	listed	above	is	that	
a	particular	trait	or	set	of	traits	cannot	always	be	assumed	to	reflect	
the	 ecological	 niche	 (Trisos,	 Petchey,	 &	 Tobias,	 2014).	 Conclusion	
based	on	null	models,	to	which	patterns	are	contrasted,	is	also	criti-
cized	 (Mittelbach	 &	 Schemske,	 2015).	 Even	 common	 assumptions	
about	 competitive	 exclusion	 are	 contradicted	 by	 studies	 showing	
that	competition	can	eliminate	more	different	and	less	related	taxa	
(Mayfield	&	Levine,	2010).

2.2 | Processes acting in concert

Other	 challenges	 are	 associated	with	 the	 complex	nature	of	 com-
munity	ecology	(Appendix	S2).	Communities	are	structured	through	
multiple	 processes,	 acting	 on	 different	 spatiotemporal	 scales,	 and	
different	processes	can	give	similar	patterns	(Vellend,	2010).	Existing	
methods,	however,	often	only	infer	the	net	effect	of	processes	or	the	
dominant	process.	This	 introduces	challenges	even	 in	 the	simplest	
case	when	processes	on	local	geographical	and	ecological	temporal	
scale	are	considered.	The	communities	may	be	structured	through	
a	 combination	 of	 environmental	 filtering	 and	 competition	 (Kraft,	
Valencia,	&	Ackerly,	2008),	but	 the	 relative	strength	of	 these	pro-
cesses	varies	continuously	with	abiotic	and	biotic	variables	(Pontarp,	
Ripa,	 &	 Lundberg,	 2012;	 Trisos	 et	al.,	 2014).	 The	 focus	 of	 current	
inference	methods	on	habitat	 filtering	and	competition	 is	also	sur-
prising	 as	 both	 empirical	 (Alto,	 Malicoate,	 Elliott,	 &	 Taylor,	 2012)	
and	theoretical	(Pontarp	&	Petchey,	2016)	studies	show	that	trophic	

TABLE  2 Challenges	and	limitations	associated	with	current	inference	techniques	and	methods	categorized	into	three	overarching	
categories	(column	1)

Challenge category Challenge/Limitation Description Reference example

Basic	assumptions	
of	the	methods

Identifying	traits	that	
can	be	used	as	a	
proxy	for	niche

Phenotypic	inference	techniques	assume	that	trait(s)	can	be	used	as	a	proxy	
for	niche.	Identifying	the	traits	that	define	an	organism’s	niche	and	thus	
drive	the	assembly	processes	can,	however,	be	difficult	and	must	be	
supported	by	expert	knowledge	of	organisms’	natural	histories.	Appropriate	
weighting	of	traits	can	also	be	difficult	to	establish

Petchey	and	
Gaston	(2006)

Identifying	the	
relationship	
between	niche,	
traits,	and	
phylogeny

Phylogenetic	inference	techniques	assume	a	mapping	between	relatedness	
and	niche.	The	interpretation	of	phylogenetic	patterns	is	contingent	on	trait	
evolution	and	the	distribution	of	traits	over	the	phylogeny.	The	degree	of	
community	clustering	given	by	a	certain	process	will,	in	other	words,	be	
contingent	on	whether	the	niche	is	conserved	or	labile.

Wiens	et	al.	
(2010)

Assuming	a	fixed	
species	pool	and	no	
evolution	or	no	
explicit	space

The	current	theory	is	mainly	focused	on	local	community	assembly	from	a	
fixed	regional	species	pool	and	assumes	that	dispersal	is	not	limiting.	This	
implies	that	local	community	composition	results	only	from	local	processes	
(e.g.,	habitat	filtering	and	competition)

Pausas	and	Verdu	
(2010)

Assuming	that	only	
similar	species	
exclude	each	other	
due	to	competition.

A	current	paradigm	in	ecology	states	that	species	that	are	closely	related,	
share	traits,	and	thus	also	have	similar	niches	cannot	co-	exist	due	to	
competitive	exclusion.	Recent	studies	have,	however,	showed	that	
competition	can	sometimes	eliminate	more	different	and	less	related	
species

Mayfield	and	
Levine	(2010)

Method	specificity	
and	scale-	
dependent	
processes

Single	process	
inference

Most	methods	only	allow	for	inference	on	the	net	effect	of	processes	and	do	
not	partition	the	relative	importance	of	ecological,	evolutionary,	and	spatial	
processes	acting	in	concert

Petchey	(2007)

Evolution	is	ignored Evolutionary	contingencies	are	largely	ignored	in	current	inference	tech-
niques.	This	is	limiting,	in	particular	when	analysing	phylogenetic	patterns

Emerson	and	
Gillespie	(2008)

Scale-	dependent	
processes

Different	traits	may	be	affected	by	different	processes	at	different	temporal	
and	spatial	scales.

Trisos,	Petchey	
and	Tobias	
(2014)

Lack	of	mechanis-
tic	links	between	
process	and	
pattern

Unknown	
mechanisms

Methods	that	take	environmental	factors	and	explicit	spatial	components	
into	account	(e.g.,	variance	partitioning)	are	mainly	phenomenological	or	
statistical.	A	mechanistic	understanding	of	the	causal	link	between	pattern	
and	process	is	thus	often	lacking

Gotelli	et	al.	
(2009)

Trophic	interactions	
are	often	ignored

Even	though	it	is	well	known	that	trophic	interactions	can	structure	
communities,	trophic	processes	are	largely	ignored	when	patterns	are	
interpreted

Mouquet	et	al.	
(2012)
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interactions	also	structure	communities.	Furthermore,	spatial	struc-
ture	can	facilitate	coexistence	of	similar	species	and	high	dispersal	
may	 lead	 to	 increased	 co-	occurrence	of	 species.	Current	methods	
do,	however,	rarely	consider	spatiotemporal	dynamics.	Finally,	cur-
rent	 process	 inference	 methods	 focus	 largely	 on	 ecological	 pro-
cesses	(Leibold	et	al.,	2010)	although	the	importance	of	evolutionary	
processes	is	well	known	(Cortez	&	Ellner,	2010;	Leibold	et	al.,	2010).

2.3 | Lack of mechanistic inference

The	 final	 major	 challenge	 associated	with	 current	 inference	 tech-
niques	 that	emerge	 from	 the	 literature	 is	 their	 inability	 to	provide	
explicit	information	about	the	mechanistic	link	between	process	and	
pattern	(Adler	et	al.,	2013).	Lack	of	information	about	the	underlying	
mechanisms	can	lead	to	misinterpretations	of	patterns.	For	example,	
trophic	interactions	and	evolution	are	seldom	considered	in	process	
inference	(Pausas	&	Verdu,	2010)	despite	evidence	of	major	effects	
on	 both	 trait	 distributions	 and	 phylogenetic	 patterns	 (Pontarp	 &	
Petchey,	2016,	2018).

3  | IMPLEMENTING MECHANISTIC AND 
INCLUSIVE APPROACHES

In	line	with	advances	in	other	fields,	such	as	macroecology	(Cabral	
et	al.,	 2017;	 D’Amen,	 Rahbek,	 Zimmermann,	 &	 Guisan,	 2015)	 and	
ecological	 forecasting	 (Niu	 et	al.,	 2014;	 Urban	 et	al.,	 2016),	 more	
general	 and	 flexible	methodological	 inference	 frameworks	 can	 be	
adopted.	Here,	we	present	a	generic	macroevolutionary	modelling	
framework	 coupled	 with	 Bayesian	 statistical	 methods	 for	 model	

fitting	and	model	improvement	(Fig.	1).	The	framework	makes	use	of	
a priori	knowledge	for	both	model	construction	and	parameter	esti-
mation.	Evolutionary	processes	can	be	turned	on	or	off,	competitive	
and/or	predator–prey	interactions	can	be	included,	different	types	
of	 data	 can	be	utilized,	 and	 the	 level	 of	mechanistic	 detail	 can	be	
adjusted	as	needed.

3.1 | Developing an eco- evolutionary model 
for inference

A	 community	 model	 for	 inference	 needs	 to	 be	 flexible,	 include	
multiple	processes,	and	output	multiple	types	of	data.	With	this	 in	
mind,	we	base	our	model	on	 the	generalized	Lotka–Volterra	 (GLV)	
equations	 (Case,	 2000)	 extended	 into	 geographical	 space	 (Fig.	2,	
Appendix	S3).	This	model	thus	 includes	ecological	and	spatial	pro-
cesses	 and	 we	 combine	 available	 microevolutionary	 theory	 and	
simulations	of	macroevolutionary	patterns	 in	 the	 form	of	adaptive	
radiations.

For	 simplicity,	 we	 assume	 that	 space	 is	 represented	 by	 three	
patches	 R,	 G,	 and	 B	 denoted	 with	 subscripts	 R,	 G,	 and	 B below. 
Dispersal	between	any	two	patches	is	assumed	symmetrical	and	oc-
curs	at	given	per	capita	rates	(see	Appendix	S3	for	implementation).	
The	dynamics	of	n	prey	populations	and	m	predator	populations	in	
patch	R	are	given	by:

(1)

dVi,R

Vi,Rdt
=r(1−

n
∑

j=1

�(ui ,uj)Vj,R

K(ui ,uopt)
)−

m
∑

k=1

a
�

ui,zk
�

Pk,R

+mR,G

�

Vi,G−Vi,R

�

+mR,B

�

Vi,B−Vi,R

�

(2)
dPk,R

Pk,Rdt
=−d+c

n
∑

i=1

a
(

ui,zk
)

Vi,R +mR,G

(

Pi,G−Pi,R

)

+mR,B

(

Pi,B−Pi,R

)

F IGURE  1 The	proposed	process	inference	approach	including	(1)	model	construction,	(2)	model	fitting	and	parameter	estimation,	
and	(3)	model	selection.	Dynamic	community	models	are	suitable	as	they	are	often	based	on	simple	population	dynamical	models	but	can	
be	extended	to	include	mechanisms	through	trait-	based	dynamics	and	population-		or	individual-	based	implementation	(red	section	in	a).	
Prior	knowledge	informs	model	construction	and	implementation	(b,	I,	II).	Theoretical	model	investigation	can	identify	different	processes	
that	may	give	rise	to	similar	patterns	and	thus	may	be	difficult	to	distinguish	between	(b,	III).	Parameter	estimation	provides	quantitative	
information	on	the	processes	that	are	modelled	given	the	data	(b,	IV,	V)	and	the	model	selection	procedure	guide	the	model	construction	
and	inclusion	or	exclusion	of	particular	processes	(b,	VI,	VIII)
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for	i = 1	to	n and k = 1	to	m.	Here,	Vi,s and Pk,s	denote	prey	and	pred-
ator	population	size	in	patch	s,	respectively,	with	s	referring	to	patch	
R,	G,	or	B.	The	equations	for	the	other	two	patches	are	similar.	The	
parameters	r and d	are	the	intrinsic	prey	growth	rate	and	the	preda-
tor	mortality	rate,	respectively.	Here,	we	assume	that	all	patches	are	
similar,	 but	variation	can	be	 implemented	 through	 species-		 and/or	
patch-	specific	growth	and	death	(formulated	as	ri,S and dk,s).

The	 trait-	dependent	 functions	 on	 the	 right-	hand	 side	 of	
Equations	1	and	2	are	given	by:

 

 and

where	K(ui,	uopt)	represents	the	carrying	capacity	for	a	monomor-
phic	population	i	of	prey	individuals	with	trait	value	ui	in	a	habitat	
characterized	 by	 a	 resource	 distribution	 with	 its	 peak	 resource	
availability	 at	 the	 point	 uopt.	 Resource	 availability	 declines	 sym-
metrically	 as	 u	 deviates	 from	 uopt	 according	 to	 σK.	 The	 interac-
tion,	α(ui,uj),	between	prey	populations	 i and j	 is	modelled	with	a	
Gaussian	function	where	σα	determines	the	degree	of	competition	
between	populations	with	traits	ui and uj	and	can	thus	be	viewed	

as	the	niche	width	of	the	prey.	Equation	5	models	the	interaction,	
a(ui,	zk),	between	a	 focal	predator	population	k	with	 trait	value	z 
and	a	prey	population	i	with	trait	value	u.	The	parameter	bmax de-
notes	the	maximum	attack	rate	obtained	when	ui = zk	and	this	rate	
then	falls	of	symmetrically	as	ui	deviates	from	zk	according	to	σa. 
Similar	to	the	σα	parameter,	σa	can	be	viewed	as	the	niche	width	
of	the	predator.	Again	parameters	bmax and K0	can	be	made	patch-		
and	species-	specific	if	needed.

The	model	 is	flexible	enough	to	model	newly	established	com-
munities	 of	 organisms	with	 low	 evolutionary	 potential	 by	 seeding	
only	one	patch	with	interacting	populations	and	by	omitting	disper-
sal.	With	this	being	said,	for	more	complex	systems,	explicit	space	
and	dispersal	may	be	required.	For	old	communities	or	fast-	evolving	
organisms	 (e.g.,	 microbes),	 implementing	 evolutionary	 process	 is	
desirable.	 The	model	 is	 thus	 able	 to	 capture	 a	 range	 of	 scenarios	
ranging	 from	ecological	assembly	across	space	 to	macroevolution-
ary	processes	where,	for	example,	ecological	opportunity	is	followed	
by	 adaptive	 radiations.	 For	 this,	we	use	 an	 adaptive	dynamics	 ap-
proach	 (Brännström,	 Johansson,	 &	 von	 Festenberg,	 2013;	 Geritz,	
Kisdi,	Meszena,	&	Metz,	1998;	Metz,	Geritz,	Meszena,	Jacobs,	&	Van	
Heerwaarden,	1996)	 (see	 also	Appendix	S3).	With	 full	 complexity,	
the	simulation	model	 includes	 intra-		and	 interspecific	competition,	
trophic	 interactions,	dispersal,	 and	 trait	 evolution,	 and	can	exhibit	
evolutionary	branching	 (Fig.	2).	 The	model	 outputs	population	dy-
namics,	 equilibrium	 population	 sizes,	 and	 trait	 distributions	 for	
each	 evolutionary	 step	 (Fig.	3).	 By	 assigning	 a	 species	 identity	 to	
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F IGURE  2 Model	illustration	(a–c)	and	initial	conditions	for	the	most	complex	model	scenario	presented	this	paper	(d).	Predators	(a)	and	
prey	(b)	can	coexist	and	disperse	between	three	habitats,	defined	by	their	resource	distributions	(c).	Species	and	resources	are	distributed	
in	trait	space	(colour	gradient)	and	consumption	is	dictated	by	consumer-	resource	trait	matching.	As	an	example,	red	prey	is	optimized	for	
utilizing	red	parts	of	the	resource	distribution	and	green	predators	are	optimized	to	consume	green	prey.	Competition	between	species	
is	dictated	by	their	niche	width	(black	and	grey	kernels).	Large	overlap	between	niche	kernels	indicates	high	competition	and	predation	
pressure	respectively.	In	the	most	complex	case,	we	initiate	the	model	with	three	habitats	each	with	their	own	resource	distribution	
(solid	red,	green	and	blue	lines	in	d).	Maximum	carrying	capacity	in	each	habitat	is	set	to	10,000,	12,000,	and	13,000	and	the	peak	of	the	
distributions	is	situated	at	trait	value	0,	1,	and	2	respectively.	We	initiate	the	system	with	three	prey	and	three	predators	(one	in	each	
habitat)	with	trait	values	equal	to	the	resource	distribution	peaks.	Prey	and	predators	have	the	same	trait	value,	but	we	set	niche	widths	for	
prey	(dashed	lines)	to	be	slightly	wider	than	predator	niche	width	(dotted	lines).	Colour	coding	in	(d)	denotes	habitats	and	niche	kernels	are	
coded	according	to	where	the	species	occurs	initially.	Note	that	the	y-	axis	has	no	direct	association	with	the	niche	kernels	in	d
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individuals,	 for	example,	using	a	 trait-	based	species	definition	 (see	
also	Pontarp,	Ripa,	&	Lundberg,	2015;	Pontarp	et	al.,	2012),	we	can	
follow	 trait	 evolution,	 diversity,	 and	 phylogenetic	 and	 phenotypic	
community	 structure	 throughout	 evolutionary	 history	 (see	 also	
Pontarp	&	 Petchey,	 2018).	 Code	 for	 the	model	 implementation	 is	
provided	 at	 https://zenodo.org/badge/latestdoi/158187026	 and	 a	
guide	to	model	modification	is	found	in	Appendix	S5.

3.2 | Quantifying assembly processes through 
parameter estimation and model selection

While	classical	parameter	estimation	methods	assign	each	param-
eter	a	given	value	or	range	of	values	based	on	the	data	provided,	
Bayesian	 methods	 additionally	 make	 use	 of	 prior	 knowledge	 of	
reasonable	 parameter	 values	 to	 arrive	 at	 parameter	 estimates.	
This	 knowledge	 takes	 the	 form	 of	 a	 prior	 probability	 of	 a	 given	
model	and	prior	distribution	for	each	model	parameter.	The	data	
are	then	used	to	determine	corresponding	posterior	distributions	
that	reflect	the	best	estimate	of	each	parameter	value	and	model	

selection	 is	made	 through	Bayes	 factors	 (Appendix	 S4).	 The	 un-
certainty	 associated	 with	 the	 distributions	 provides	 information	
about	model	sensitivity	or	lack	of	signal	in	data	for	a	given	param-
eter	while	 comparisons	 of	 estimates	 among	 parameters	 help	 re-
veal	 the	relative	strength	and	 importance	of	different	processes.	
Furthermore,	by	each	time	evaluating	an	increasingly	complicated	
model	 (Fig.	1),	 it	 is	 possible	 to	 circumvent	 potential	 problems	 of	
using	an	overly	complex	model.

There	are	several	benefits	associated	with	using	the	proposed	
approach	 (Fig.	1).	 First,	 and	 before	 the	 models	 are	 fitted	 to	 real	
data,	a	theoretical	model	 investigation	can	 identify	different	pro-
cesses	that	may	give	rise	to	similar	patterns.	In	this	case,	it	will	be	
difficult	 to	 distinguish	 between	 those	 processes	 and	 additional	
information	or	experimentation	may	be	needed	for	successful	 in-
ference.	Second,	it	is	possible	to	evaluate	the	model	and	inference	
techniques	by	simulating	data	and	then	using	the	suggested	infer-
ence	method	to	retrieve	known	parameters.	The	amount	of	prior	
information	about	the	system	necessary	for	correct	inference	can	
be	 evaluated.	 If	 processes	 cannot	 be	 inferred	 in	 simulated	 data,	

F IGURE  3 Representative	data	outputs	from	the	model,	including	time	series	(a,	e),	trait	distributions	(n,	c,	f,	g),	and	adaptive	radiations	
(d,	h)	for	prey	(a,	e,	b,	c,	d)	and	predators	(a,	e,	f,	g,	h).	We	compute	ecological	dynamics	and	equilibrium	for	each	subpopulation	in	each	
habitat	(a)	and	for	each	prey	(circles)	and	predator	(triangles)	population	across	habitats	(e).	Trait	distributions	at	equilibrium	for	the	initiated	
community	are	shown	for	the	initiated	community	of	three	prey	(b)	and	three	predators	(f)	distributed	in	space.	The	spatial	distribution	and	
trait	distributions	of	prey	(c)	and	predators	(g)	evolved	through	adaptive	radiations	of	co-	evolving	prey	(d)	and	predators	(h).	Colour	coding	
in	(e)	illustrates	spatial	distribution.	Pure	red,	green,	and	blue	denote	sole	occupancy	in	habitat	A,	B,	and	C,	respectively.	Occupancy	in	
multiple	habitats	is	illustrated	as	a	mix	of	colours	proportional	to	the	spatial	distribution.	Parameters	for	this	simulation	are	K0,A	=	10,000;	
K0,B	=	12,000;	K0,C	=	13,000;	uopt,A = 0; uopt,B = 1; uopt,C = 2; σK = 1; σα = 0.5; σa = 0.4; r = 1; d = −0.2;	cp = 0.3; bmax = 0.0001; M = 0.05; 
Pmut,prey = 0.01; Pmut,pred = 0.1; σmut,prey = 0.02; σmut,pred	=	0.03,	with	initial	conditions	u1 = 0; u2 = 2; u3 = 3; v1 = 0; v2 = 2; v3 = 3
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even	though	the	model	that	underlies	the	patterns	is	known,	cor-
rect	inference	on	non-	simulated	(real)	data	is	unlikely.	Third,	while	
fitting	models	 to	 data	 (Fig.	1),	 one	 can	 evaluate	 a	model	 that	 in-
cludes	 fewer	 ecological	 processes	 against	 models	 that	 include	
more	processes	and	thus	guiding	the	inclusion	or	exclusion	of	par-
ticular	processes.
Approximate	Bayesian	Computation	(ABC)	is	a	parameter	estimation	
and	model	fitting	technique	(Beaumont,	2010;	Csillery	et	al.,	2010;	
Sisson,	Fan,	&	Tanaka,	2007)	with	promise	for	overcoming	the	diffi-
culty	of	fitting	complex	models	to	diverse	data.	ABC	takes	priors	for	
each	model	parameter	as	input,	data	are	simulated	with	the	model	
many	 times	given	parameters	 that	 are	each	 time	drawn	 randomly	
from	 the	priors,	 and	 then,	 the	distance	 (often	Euclidean	distance)	
between	model	 output	 and	observed	data	 is	 evaluated	 through	 a	
set	of	summary	statistics.	Parameter	combinations	that	render	small	
distance	(defined	through	some	user-	defined	threshold)	constitute	
the	 posterior	 distributions.	 The	mean,	 mode,	 variance,	 and	 other	
metrics	of	the	posteriors	define	the	actual	parameter	estimates.	The	
simplest	way	of	generating	posterior	distributions	is	through	a	sim-
ple	rejection	algorithm	where	parameters	are	drawn	from	a	constant	
prior,	 but	 more	 powerful	 global	 optimization	 techniques	 such	 as	
Kalman	filters	(Kalman,	1960),	Markov	chain	Monte	Carlo	(Gao	et	al.,	
2011),	or	Sequential	Monte	Carlo	(Sisson	et	al.,	2007)	are	commonly	
used.	The	model	selection	procedure	is	based	on	the	same	general	
principles,	except	that	the	summary	statistics	is	defined	somewhat	
differently	 (Prangle,	 Fearnhead,	 Cox,	 Biggs,	 &	 French,	 2014).	 The	
output	from	the	ABC	model	selection	is	focused	on	acceptance/re-
jection	ratio	between	models	rather	than	posterior	parameter	distri-
butions	(Liepe	et	al.,	2014;	Toni,	Welch,	Strelkowa,	Ipsen,	&	Stumpf,	
2009).

3.3 | Inferring competitive and trophic 
interactions—an illustrative case study

We	asked	whether	it	 is	possible	to	use	the	framework,	model,	and	
tools	presented	above	to	discriminate	and	quantify	competition	and	
trophic	 interactions	 from	 data	 on	 trait	 distributions,	 phylogenetic	
data,	and	species	abundances.	The	answer	to	this	question	is	non-	
trivial	for	two	reasons.	First,	competition	and	predation	have	been	
shown	to	have	similar	effects	on	trait	distributions	which	may	limit	
inference	of	the	two	processes	(Pontarp	&	Petchey,	2016).	Second,	
as	far	as	we	know,	no	one	has	considered	predatory	effects	on	prey	
community	structure	in	an	inference	framework	before.

We	generate	our	own	observed,	“empirical”,	data	through	simu-
lations	(Zurell	et	al.,	2010)	(Fig.	4).	We	start	simulations	with	mono-
morphic	population(s)	at	the	centre	of	the	resource	distribution	and	
we	simulate	the	eco-	evolutionary	assembly	of	four	 local	consumer	
communities	for	5,000	evolutionary	time	steps.	Our	simulated	data	
are	thus	representing	a	macroevolutionary	scenario	where	ecolog-
ical	 opportunity	 facilitates	 diversification	 through	 adaptive	 radia-
tions.	Two	of	the	observed	communities	includes	competitive	prey	
only	(no	predators)	and	we	set	prey	niche	width	σα = 0.1 and σα = 0.3 
for	the	two	communities	respectively.	In	our	simulations,	we	also	set	
the	width	of	 the	resource	distribution	σK	=	1	which	means	that	di-
verse	communities	can	evolve	(Geritz	et	al.,	1998).	Furthermore,	we	
simulate	the	assembly	of	two	communities	of	co-	evolving	predators	
and	prey.	We	use	the	same	values	for	σα	as	above	and	we	set	pred-
ator	niche	width	σa	=	0.7.	Constant	model	parameters	for	all	simula-
tions	were	K0	=	10,000;	σK = 1; r = 1; d = 0.2; c = 0.3; bmax = 0.0001. 
Mutation	size	for	both	predators	and	prey	was	defined	as	a	random	
trait	value	drawn	from	a	normal	distribution	with	mean	equal	to	the	

F IGURE  4 Four	simulated	communities	used	as	“observed”	data	in	our	illustrative	case	study.	Radiations	and	trait	distributions	for	prey	
(grey)	and	predators	(red).	Two	of	the	communities	contain	competitive	consumers	only	(a–d)	with	low	(0.1)	niche	width	(a,b)	and	high	(0.3)	
niche	width	(c,d).	Two	communities	are	assembled	through	co-	evolving	competitive	consumers	and	predators	(e–h).	The	competitors	in	the	
predator–prey	communities	have	the	same	high	(e,	h)	and	low	(g,	h)	niche	widths.	The	predators	have	niche	width
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trait	value	of	the	mutating	population	and	a	variance	(σmut)	equal	to	
0.02	and	mutation	probability	for	the	prey	and	predators	were	kept	
constant	at	0.01.	We	will	 refer	 to	data,	 including	species	 richness,	
species	 abundance,	 trait	 distributions,	 and	phylogenetic	 structure,	
from	these	four	communities	as	“observed	data”	from	now	on.

To	 infer	 the	 processes	 that	 underpin	 patterns	 in	 observed	
data,	 we	 consider	 prior	 information	 about	 the	 observed	 system	
and	available	theory	while	constructing	the	candidate	model	sce-
narios	(Fig.	1).	For	this	case,	we	assume	that	the	system	is	known	
well	 enough	 for	 us	 to	 focus	 on	 eco-	evolutionary	 predator–prey	
interactions	and	we	use	established	predator–prey	models	in	our	
simulations.	 To	 illustrate	 how	 model	 modification	 can	 facilitate	
process	 inference,	we	generate	model	 output	 for	 two	 candidate	
models:	 one	 that	 includes	 consumer	 competition	 only	 and	 one	
that	 includes	competition	and	predation.	We	also	 implement	the	
model	 such	 that	multiple	 data	 types	 are	 produced	 and	we	 gen-
erate	model	output	given	parameters	from	wide	non-	informative	
prior	 distributions.	We	 infer	 the	 processes	 for	 each	 of	 our	 four	
observed	 communities	 by	 selecting	 the	 best	 model	 and	 by	 ap-
proximating	 the	 posterior	 parameter	 distribution	 for	 the	 param-
eters	 that	 are	 relevant	 for	 prey	 competition	 (prey	 niche	 width)	
and	 predator	 niche	 width,	 using	 ABC	 and	 a	 rejection	 algorithm	
(Beaumont,	2010;	Sisson	et	al.,	 2007).	As	 summary	 statistics	 for	
the	ABC,	we	utilize	as	much	of	the	available	data	as	possible.	We	

use	well-	known	community	structure	metrics	in	the	field	of	infer-
ence,	including	the	number	of	prey	species,	mean	abundance,	the	
width	of	the	trait	distribution,	mean	trait	distance,	mean	nearest	
trait	 distance,	 net	 relatedness	 index,	 and	 nearest	 phylogenetic	
taxon	index	(Appendix	S4).	The	output	from	the	ABC	analysis	con-
stitutes	the	distance	between	simulated	and	observed	data,	eval-
uated	as	the	Euclidean	distance	between	summary	statistics,	as	a	
function	 of	model	 structure	 and	model	 parameters	 (Figs	 S1–S3,	
Appendix	S4).	The	Euclidean	distance	approximates	the	likelihood	
for	a	given	model	and	parameter	set	(Beaumont,	2010;	Liepe	et	al.,	
2014;	Prangle	et	al.,	2014),	and	hence	also	the	posterior	parameter	
distribution	(Fig.	5).
We	 find	 that	 the	minimum	 Euclidean	 distance	 between	 the	 ob-
served	 data	 and	 the	 correct	 model	 is	 always	 smaller	 than	 the	
distance	 obtained	 by	 fitting	 the	 wrong	 model,	 and	 the	 accep-
tance	 ratio	 provided	 by	 the	 rejection	 algorithm	 is	 always	 larger	
for	the	correct	model	compared	to	the	wrong	model	(Figs	S1–S3,	
Appendix	S4).	The	correct	model	is	thus	selected	for	each	of	the	
four	observed	communities,	suggesting	that	prey	only	communi-
ties	can	indeed	be	distinguished	from	predator–prey	systems.	This	
is	encouraging	as	previous	studies	(Pausas	&	Verdu,	2010;	Pontarp	
&	Petchey,	2016;	Schluter,	1984)	have	 raised	concerns	about	 in-
ferring	 predator–prey	 interactions,	 using	 traditional	 techniques.	
The	 parameter	 estimates	 were	 also	 largely	 correct	 for	 the	 best	

F IGURE  5 Posterior	distributions	for	each	of	the	prey	only,	predator–prey,	narrow	prey	niche	width,	and	wide	prey	niche	width	scenarios,	
when	the	correct	models	were	fitted	to	observed	data.	Prey	niche	width	was	estimated	for	the	prey	only	scenario	(a,c);	hence,	the	one-	
dimensional	posterior	distribution	plotted	as	a	histogram	with	superimposed	fitted	normal	density	(red	curve)	for	the	number	of	simulation	
realizations	that	did	fall	within	Euclidean	threshold	value	(ε)	equal	to	1.	In	predator–prey	scenarios,	both	predator	and	prey	niche	width	were	
estimated,	hence	the	two-	dimensional	posterior	distribution	(b,d).	The	posterior	is	shown	as	a	scatter	plots	with	the	parameter	combinations	
that	did	fall	within	ε	=1	together	with	marginal	distributions	illustrated	as	blue	curves.	Red	lines	denote	the	correct	parameter	values	in	true	data
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performing	models	(Fig.	5),	showing	that	quantitative	measures	of	
the	 strength	 of	 competition	 and	 predation	 can	 be	 obtained	 in	 a	
scenario	described	by	our	 case	 study.	This	 is	 an	 advantage	over	
more	traditional	inference	where	quantitative	or	relative	measures	
of	processes	are	rarely	presented.

4  | DISCUSSION

Ecological	 communities	 are	 complex,	with	diverse	processes	 and	
actors	 (e.g.,	 Urban,	 De	Meester,	 Vellend,	 Stoks,	 &	 Vanoverbeke,	
2012;	Vellend,	2010)	and	it	is	clear	that	several	of	the	current	in-
ference	techniques	are	 too	simplistic	 (Adler	et	al.,	2013;	Cadotte	
et	al.,	 2010;	 Cavender-	Bares	 et	al.,	 2009;	 Emerson	 &	 Gillespie,	
2008;	Mouquet	et	al.,	2012;	Pausas	&	Verdu,	2010;	Vamosi	et	al.,	
2009).	A	novel,	more	mechanistic,	more	 inclusive,	 and	more	uni-
fied	 approach,	 like	 the	 one	 proposed	 here,	 for	 future	 assembly-	
process	 inference	 techniques	 is	 desirable	 as	 this	will	 allow	 for	 a	
causal	and	quantitative	link	between	multiple	processes	and	com-
munity	patterns.

Although	 the	approach	has	not	been	 synthesized	 for	process	
inference	explicitly	before,	 inference	does	 seem	 to	be	moving	 in	
the	 proposed	 direction	 (e.g.,	 van	 der	 Plas	 et	al.,	 2015).	 Several	
modelling	 approaches	 (Harris,	 2016;	 Jabot	 &	 Bascompte,	 2012;	
May,	 Giladi,	 Ristow,	 Ziv,	 &	 Jeltsch,	 2013)	 and	 statistical	 tech-
niques	 can	 be	 used,	 but	 the	 trade-	off	 in	 model	 complexity	 and	
tractability	 needs	 to	 be	 considered.	We	 present	 dynamical	 eco-	
evolutionary	 modelling	 in	 combination	 with	 ABC	 as	 particularly	
suitable.	Dynamic	modelling	is	simple	in	the	sense	that	it	is	based	
on	simple,	often	phenomenological	population	dynamical	models	
(Brännström	et	al.,	2012),	but	they	can	be	extended	to	include	de-
tailed	mechanisms	 through	 the	 inclusion	of	 trait-	based	dynamics	
and	through	a	population-		or	 individual-	based	 implementation.	A	
major	advantage	is	a	clear	link	between	ecological	and	microevolu-
tionary	processes	and	macroevolutionary	patterns.	The	trade-	off	
between	realism,	computational	costs,	and	model	tractability	can	
be	monitored	and	controlled	as	the	models	gain	in	complexity.	By	
iterating	over	model	construction	and	model	evaluation,	each	time	
evaluating	different	models	that	include/exclude	particular	assem-
bly	 processes,	 a	 type	 of	 robustness	 check	 can	 be	 accomplished	
and	the	best	model	for	the	data	identified.	Similarly,	by	evaluating	
increasingly	 complex	 versions	 of	 the	models,	 the	 optimal	 model	
for	inference	about	the	study	system	can	be	found	(see	details	in	
Appendix	S4).	Any	model	that	includes	several	processes	will,	how-
ever,	 tend	 to	 be	 complex	 and	 computationally	 costly.	 Likelihood	
functions	are	often	intractable,	leading	to	the	need	for	fitting	and	
model	selection	techniques	like	ABC.

In	 our	 case	 study,	 we	 illustrate	 how	 dynamical	 modelling	 and	
ABC	can	be	used	for	inference,	through	model	selection	and	param-
eter	estimation.	We	test	multiple	models	against	simulated	data	and	
the	correct	models	were	selected	for	our	observed	data,	indicating	
that	 the	 different	 processes	 can	 be	 distinguished	 between	with	 a	
simple	rejection	algorithm	(Sisson	et	al.,	2007)	and	without	explicit	

summary	 statistics	 optimization	 (Prangle	 et	al.,	 2014).	 Our	 case	
study	emphasizes	the	importance	to	include	the	correct	processes	
and	 thus	 to	 test	 different	 models.	 For	 example,	 a	 predator–prey	
system	that	 is	evaluated	by	a	prey	only	model	 (Fig.	S4c,	Appendix	
S4)	can	 lead	to	seemingly	good	estimates	of	prey	niche	width,	but	
the	overall	model	fit	compared	to	the	true	model	is	relatively	poor	
with	overestimation	of	the	niche	width	parameter.	These	results	are	
promising	and	they	indicate	that	our	suggested	approach	is	working	
under	the	ideal	conditions	associated	with	our	case	study.	It	will	be	
intriguing	to	see	how	the	approach	will	perform	in	practice.

Our	 case	 study	 also	 emphasizes	 the	 possibility	 and	 value	 of	
taking	prior	 information	and	multiple	data	sources	 into	account.	
The	fact	that	we	are	using	both	phylogenetic	and	trait	distribution	
data	 seems	 to	be	one	of	 the	 reasons	why	we	are	able	 to	distin-
guish	 between	 predator	 and	 prey	 processes	 as	 such	 signals	 can	
be	diffuse	in	trait	data	only	(Pontarp	&	Petchey,	2016).	This	also	
highlights	 the	empirical	 side	of	 inference,	 namely	data	 to	which	
the	models	 are	 fitted.	 As	 noted	 above,	 data	 inform	 the	models	
and	 are	 thus	 imperative	 for	 the	model	 fitting.	Data	 also	 dictate	
model	 construction	 as	 the	model	 output	 needs	 to	 be	 compara-
ble	 with	 data	 (e.g.,	 diversity,	 size	 distributions,	 or	 phylogenetic	
patterns).	In	our	case	study,	we	are	thus	not	only	illustrating	the	
technical	aspects	of	novel	inference	but	also	provide	an	indication	
of	what	type	of	data	may	be	useful	in	the	future	for	inference	to	
become	more	 inclusive	 and	detailed.	 Furthermore,	 data	 provide	
the	knowledge	of	the	natural	history	of	the	study	system	that	also	
informs	model	 construction.	A	 priori	 information	of	 a	 particular	
system	 can	 narrow	 down	 the	 priors	 for	 ABC	 and	 thus	 facilitate	
parameter	estimation	by	reducing	the	parameter	space	that	needs	
to	be	searched	in	the	optimization	procedure.	For	certain	systems,	
reasonable	parameter	values	may	already	be	available	 in	 the	 lit-
erature	and	 it	might	be	possible	to	measure	some	parameters	 in	
independent	studies.	With	this	in	mind,	we	envision	that	process	
inference	will	continue	to	move	away	from	simple	statistical	and	
non-	mechanistic	inference	techniques	for	approaches	with	a	con-
stant	 flow	 of	 information	 between	 experimental	 and	 field	 data,	
model	 construction,	parameter	estimation,	 and	model	 selection.	
This	will	come	with	technical	challenges	as	well	as	increased	de-
mands	on	data,	computational	power,	and	experimental	progress.	
Many	of	these	difficulties	are,	however,	already	identified	and	to	
some	extent	resolved.

ACKNOWLEDG EMENTS

The	 University	 of	 Zurich	 Research	 Priority	 Programme	 on	 Global	
Change	 and	 Biodiversity	 supported	 this	 research.	 In	 addition,	
funding	 came	 from	 the	 Swiss	 National	 Science	 Foundation	 (grant		
31003A_159498	 to	O.L.P.).	 Financial	 support	 to	MP	was	provided	
by	 the	Swedish	Research	Council.	ÅB	acknowledges	 support	 from	
the	 Swedish	 Research	 Council	 and	 the	 Swedish	 Research	 Council	
Formas.	Simulations	were	performed	on	resources	provided	by	the	
Swedish	National	Infrastructure	for	Computing	(SNIC)	at	Center	for	
Scientific	 and	 Technical	 computing	 LUNARC	 Lund	University.	We	



10  |    Methods in Ecology and Evoluon PONTARP eT Al.

thank	Jonathan	Levine,	Florian	Altermatt,	and	Miguel	Verdú	for	com-
ments	and	suggestions	that	improved	initial	versions	of	this	paper.

AUTHORS’  CONTRIBUTIONS

All	authors	contributed	with	the	ideas	for	the	content	of	the	manu-
script;	M.P.	designed	and	implemented	the	case	study	model	analy-
ses.	All	authors	contributed	to	the	writing	of	the	manuscript.

DATA ACCE SSIBILIT Y

The	model	and	the	ABC	analysis	presented	in	the	main	text	are	im-
plemented	as	MATLAB	 (version	R2017b)	code.	All	code	 is	publicly	
available	at	https://zenodo.org/badge/latestdoi/158187026	and	de-
scribed	in	Appendix	S5.	No	empirical	or	other	previously	published	
data	were	used.

ORCID

Mikael Pontarp  https://orcid.org/0000-0001-9045-7829 

Owen L. Petchey  https://orcid.org/0000-0002-7724-1633  

R E FE R E N C E S

Adler,	P.	B.,	Fajardo,	A.,	Kleinhesselink,	A.	R.,	&	Kraft,	N.	J.	B.	(2013).	Trait-	
based	tests	of	coexistence	mechanisms.	Ecology Letters,	16,	1294–1306.

Alto,	B.	W.,	Malicoate,	J.,	Elliott,	S.	M.,	&	Taylor,	J.	(2012).	Demographic	
consequences	 of	 predators	 on	 prey:	 Trait	 and	 density	 mediated	 
effects	on	mosquito	larvae	in	containers.	PLoS ONE,	7,	1–8.

Beaumont,	M.	A.	 (2010).	Approximate	Bayesian	Computation	 in	evolu-
tion	and	ecology.	Annual Review of Ecology, Evolution, and Systematics,	
41(41),	379–406.

Borcard,	D.,	Legendre,	P.,	&	Drapeau,	P.	(1992).	Partialling	out	the	spatial	
component	of	ecological	variation.	Ecology,	73,	1045–1055.

Brännström,	A.,	 Johansson,	 J.,	 Loeuille,	N.,	Kristensen,	N.,	 Troost,	 T.	A.,	
Lambers,	R.	H.	R.,	&	Dieckmann,	U.	(2012).	Modelling	the	ecology	and	
evolution	of	communities:	A	review	of	past	achievements,	current	ef-
forts,	and	future	promises.	Evolutionary Ecology Research,	14,	601–625.

Brännström,	Å.,	Johansson,	J.,	&	von	Festenberg,	N.	(2013).	The	hitchhik-
er’s	guide	to	adaptive	dynamics.	Games,	4,	304–328.

Cabral,	J.S.,	Valente,	L.,	&	Hartig,	F.	(2017)	Mechanistic	simulation	mod-
els	 in	macroecology	and	biogeography:	State-	of-	art	and	prospects.	
Ecography,	40,	267–280.

Cadotte,	M.	W.,	Davies,	 T.	 J.,	 Regetz,	 J.,	 Kembel,	 S.	W.,	 Cleland,	 E.,	&	
Oakley,	 T.	 H.	 (2010).	 Phylogenetic	 diversity	 metrics	 for	 ecological	
communities:	Integrating	species	richness,	abundance	and	evolution-
ary	history.	Ecology Letters,	13,	96–105.

Case,	T.	J.	(2000).	An illustrated guide to theoretical ecology.	Oxford	New	
York:	Oxford	University	Press	Inc.

Cavender-Bares,	J.,	Kozak,	K.	H.,	Fine,	P.	V.	A.,	&	Kembel,	S.	W.	(2009).	
The	 merging	 of	 community	 ecology	 and	 phylogenetic	 biology.	
Ecology Letters,	12,	693–715.

Cortez,	M.	H.,	&	 Ellner,	 S.	 P.	 (2010).	Understanding	 rapid	 evolution	 in	
predator-	prey	 interactions	using	 the	 theory	of	 fast-	slow	dynamical	
systems.	American Naturalist,	176,	E109–E127.

Csillery,	 K.,	 Blum,	 M.	 G.	 B.,	 Gaggiotti,	 O.	 E.,	 &	 Francois,	 O.	 (2010).	
Approximate	 Bayesian	 Computation	 (ABC)	 in	 practice.	 Trends in 
Ecology & Evolution,	25,	410–418.

D’Amen,	M.,	Rahbek,	C.,	Zimmermann,	N.E.,	&	Guisan,	A.	(2015)	Spatial	
predictions	at	the	community	level:	From	current	approaches	to	fu-
ture	frameworks.	Biological Reviews,	92,	169–187.

Dray,	S.,	&	Legendre,	P.	 (2008).	Testing	 the	species	 traits-	environment	
relationships:	 The	 fourth-	corner	 problem	 revisited.	 Ecology,	 89,	
3400–3412.

Emerson,	B.	C.,	&	Gillespie,	R.	G.	(2008).	Phylogenetic	analysis	of	com-
munity	assembly	and	structure	over	space	and	time.	Trends in Ecology 
& Evolution,	23,	619–630.

Gao,	C.,	Wang,	H.,	Weng,	E.	S.,	Lakshmivarahan,	S.,	Zhang,	Y.	F.,	&	Luo,	
Y.	 Q.	 (2011).	 Assimilation	 of	 multiple	 data	 sets	 with	 the	 ensem-
ble	 Kalman	 filter	 to	 improve	 forecasts	 of	 forest	 carbon	 dynamics.	
Ecological Applications,	21,	1461–1473.

Geritz,	S.	A.	H.,	Kisdi,	E.,	Meszena,	G.,	&	Metz,	J.	A.	J.	(1998).	Evolutionarily	
singular	 strategies	 and	 the	 adaptive	 growth	 and	 branching	 of	 the	
evolutionary	tree.	Evolutionary Ecology,	12,	35–57.

Gotelli,	 N.	 J.,	 Anderson,	 M.	 J.,	 Arita,	 H.	 T.,	 Chao,	 A.,	 Colwell,	 R.	 K.,	
Connolly,	S.	R.,	…	Willig,	M.	R.	 (2009).	Patterns	and	causes	of	spe-
cies	richness:	A	general	simulation	model	for	macroecology.	Ecology 
Letters,	12,	873–886.

Harris,	 D.	 J.	 (2016).	 Inferring	 species	 interactions	 from	 co-	occurrence	
data	with	Markov	networks.	Ecology,	97,	3308–3314.

Jabot,	F.,	&	Bascompte,	J.	(2012).	Bitrophic	interactions	shape	biodiver-
sity	 in	space.	Proceedings of the National Academy of Sciences of the 
United States of America,	109,	4521–4526.

Kalman,	R.	E.	 (1960).	A	new	approach	to	 linear	filtering	and	prediction	
problems.	Journal of basic engineering,	82,	35–45.

Kraft,	 N.	 J.	 B.,	 Valencia,	 R.,	 &	 Ackerly,	 D.	 D.	 (2008).	 Functional	 traits	
and	niche-	based	tree	community	assembly	 in	an	amazonian	forest.	
Science,	322,	580–582.

Legendre,	P.,	Galzin,	R.,	&	HarmelinVivien,	M.	L.	(1997).	Relating	behavior	to	
habitat:	Solutions	to	the	fourth-	corner	problem.	Ecology,	78,	547–562.

Leibold,	M.	A.,	Economo,	E.	P.,	&	Peres-Neto,	P.	(2010).	Metacommunity	
phylogenetics:	Separating	the	roles	of	environmental	filters	and	his-
torical	biogeography.	Ecology Letters,	13,	1290–1299.

Liepe,	 J.,	 Kirk,	 P.,	 Filippi,	 S.,	 Toni,	 T.,	 Barnes,	C.	 P.,	&	 Stumpf,	M.	 P.	H.	
(2014).	 A	 framework	 for	 parameter	 estimation	 and	 model	 selec-
tion	 from	experimental	data	 in	 systems	biology	using	approximate	
Bayesian	computation.	Nature Protocols,	9,	439–456.

May,	F.,	Giladi,	I.,	Ristow,	M.,	Ziv,	Y.,	&	Jeltsch,	F.	(2013).	Metacommunity,	
mainland-	island	 system	 or	 island	 communities?	 Assessing	 the	 re-
gional	 dynamics	 of	 plant	 communities	 in	 a	 fragmented	 landscape.	
Ecography,	36,	842–853.

Mayfield,	M.	M.,	&	Levine,	 J.	M.	 (2010).	Opposing	effects	of	 competi-
tive	exclusion	on	the	phylogenetic	structure	of	communities.	Ecology 
Letters,	13,	1085–1093.

Metz,	J.	A.,	Geritz,	S.	A.,	Meszena,	G.,	Jacobs,	F.	J.,	&	Van	Heerwaarden,	
J.	 S.	 (1996).	 Adaptive	 dynamics,	 a	 geometrical	 study	 of	 the	 con-
sequences	 of	 nearly	 faithful	 reproduction.	 Stochastic and Spatial 
Structures of Dynamical Systems,	45,	183–231.

Mittelbach,	G.	G.,	&	Schemske,	D.	W.	(2015).	Ecological	and	evolutionary	
perspectives	on	community	assembly.	Trends in Ecology & Evolution,	
30,	241–247.

Mouquet,	 N.,	 Devictor,	 V.,	 Meynard,	 C.	 N.,	 Munoz,	 F.,	 Bersier,	 L.	 F.,	
Chave,	 J.,	 …	 Thuiller,	 W.	 (2012).	 Ecophylogenetics:	 Advances	 and	
perspectives.	Biological Reviews,	87,	769–785.

Niu,	S.L.,	Luo,	Y.Q.,	Dietze,	M.C.,	Keenan,	T.F.,	Shi,	Z.,	Li,	J.W.,	&	Chapin,	
F.S.	 (2014)	 The	 role	 of	 data	 assimilation	 in	 predictive	 ecology.	
Ecosphere,	5,	1–16.

Pausas,	J.	G.,	&	Verdu,	M.	(2010).	The	jungle	of	methods	for	evaluating	
phenotypic	and	phylogenetic	structure	of	communities.	BioScience,	
60,	614–625.

Petchey,	O.	 L.	 (2007).	 Effects	 of	 environmental	 variability	 on	 ecologi-
cal	communities:	Testing	the	insurance	hypothesis	of	biodiversity	in	

https://zenodo.org/badge/latestdoi/158187026
https://orcid.org/0000-0001-9045-7829
https://orcid.org/0000-0001-9045-7829
https://orcid.org/0000-0002-7724-1633
https://orcid.org/0000-0002-7724-1633


     |  11Methods in Ecology and EvoluonPONTARP eT Al.

aquatic	microcosms.	Impact of Environmental Variability on Ecological 
Systems,	2,	179–196.

Petchey,	O.	L.,	&	Gaston,	K.	J.	(2006).	Functional	diversity:	Back	to	basics	
and	looking	forward.	Ecology Letters,	9,	741–758.

van	 der	 Plas,	 F.,	 Janzen,	 T.,	 Ordonez,	 A.,	 Fokkema,	 W.,	 Reinders,	 J.,	
Etienne,	R.	S.,	&	Olff,	H.	(2015).	A	new	modeling	approach	estimates	
the	relative	importance	of	different	community	assembly	processes.	
Ecology,	96,	1502–1515.

Pontarp,	M.,	 &	 Petchey,	 O.	 L.	 (2016).	 Community	 trait	 overdispersion	
due	to	trophic	interactions:	concerns	for	assembly	process	inference.	
Proceedings of the Royal Society B Biological Sciences,	283,	20161729.	
https://doi.org/10.1098/rspb.2016.1729

Pontarp,	M.,	&	Petchey,	O.	L.	(2018).	Ecological	opportunity	and	pred-
ator–prey	 interactions:	Linking	eco-	evolutionary	processes	and	di-
versification	in	adaptive	radiations.	Proceedings of the Royal Society 
B,	285,	20172550.	https://doi.org/10.1098/rspb.2017.2550

Pontarp,	M.,	Ripa,	J.,	&	Lundberg,	P.	(2012).	On	the	origin	of	phylogenetic	
structure	 in	 competitive	 metacommunities.	 Evolutionary Ecology 
Research,	14,	269–284.

Pontarp,	M.,	Ripa,	J.,	&	Lundberg,	P.	(2015).	The	biogeography	of	adap-
tive	radiations	and	the	geographic	overlap	of	sister	species.	American 
Naturalist,	186,	565–581.

Prangle,	D.,	Fearnhead,	P.,	Cox,	M.	P.,	Biggs,	P.	J.,	&	French,	N.	P.	 (2014).	
Semi-	automatic	selection	of	summary	statistics	for	ABC	model	choice.	
Statistical Applications in Genetics and Molecular Biology,	13,	67–82.

Ricklefs,	R.	E.,	&	Travis,	J.	(1980).	A	morphological	approach	to	the	study	
of	avian	community	organization.	Auk,	97,	321–338.

Schluter,	D.	 (1984).	A	 variance	 test	 for	 detecting	 species	 associations,	
with	some	example	applications.	Ecology,	65,	998–1005.

Sisson,	S.	A.,	Fan,	Y.,	&	Tanaka,	M.	M.	 (2007).	Sequential	Monte	Carlo	
without	likelihoods.	Proceedings of the National Academy of Sciences 
of the United States of America,	104,	1760–1765.

Toni,	T.,	Welch,	D.,	Strelkowa,	N.,	 Ipsen,	A.,	&	Stumpf,	M.	P.	H.	 (2009).	
Approximate	Bayesian	computation	scheme	for	parameter	inference	
and	model	selection	in	dynamical	systems.	Journal of the Royal Society 
Interface,	6,	187–202.

Trisos,	C.	H.,	Petchey,	O.	L.,	&	Tobias,	J.	A.	(2014).	Unraveling	the	inter-
play	of	community	assembly	processes	acting	on	multiple	niche	axes	
across	spatial	scales.	American Naturalist,	184,	593–608.

Urban,	M.C.,	Bocedi,	G.,	Hendry,	A.P.,	Mihoub,	J.B.,	Pe’er,	G.,	Singer,	A.,	
…	Travis,	J.M.J.	(2016)	Improving	the	forecast	for	biodiversity	under	
climate	change.	Science,	353,	aad8466.	https://doi.org/10.1126/sci-
ence.aad8466

Urban,	M.	 C.,	 De	Meester,	 L.,	 Vellend,	M.,	 Stoks,	 R.,	 &	 Vanoverbeke,	
J.	 (2012).	 A	 crucial	 step	 toward	 realism:	 Responses	 to	 climate	
change	from	an	evolving	metacommunity	perspective.	Evolutionary 
Applications,	5,	154–167.

Vamosi,	S.	M.,	Heard,	S.	B.,	Vamosi,	J.	C.,	&	Webb,	C.	O.	(2009).	Emerging	
patterns	 in	 the	 comparative	 analysis	 of	 phylogenetic	 community	
structure.	Molecular Ecology,	18,	572–592.

Vellend,	 M.	 (2010).	 Conceptual	 synthesis	 in	 community	 ecology.	
Quarterly Review of Biology,	85,	183–206.

Webb,	C.	O.,	Ackerly,	D.	D.,	McPeek,	M.	A.,	&	Donoghue,	M.	J.	(2002).	
Phylogenies	 and	community	ecology.	Annual Review of Ecology and 
Systematics,	33,	475–505.

Wiens,	 J.	 J.,	 Ackerly,	 D.	D.,	 Allen,	 A.	 P.,	 Anacker,	 B.	 L.,	 Buckley,	 L.	 B.,	
Cornell,	H.	V.,	…	 Stephens,	 P.	 R.	 (2010).	Niche	 conservatism	 as	 an	
emerging	 principle	 in	 ecology	 and	 conservation	 biology.	 Ecology 
Letters,	13,	1310–1324.

Zurell,	D.,	Berger,	U.,	Cabral,	J.	S.,	Jeltsch,	F.,	Meynard,	C.	N.,	Munkemuller,	
T.,	 …	Grimm,	 V.	 (2010).	 The	 virtual	 ecologist	 approach:	 Simulating	
data	and	observers.	Oikos,	119,	622–635.

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.

How to cite this article:	Pontarp	M,	Brännström	Å,	Petchey	OL. 
Inferring	community	assembly	processes	from	macroscopic	
patterns	using	dynamic	eco-	evolutionary	models	and	
Approximate	Bayesian	Computation	(ABC).	Methods Ecol 
Evol. 2018;00:1–11. https://doi.org/10.1111/2041-
210X.13129

https://doi.org/10.1098/rspb.2016.1729
https://doi.org/10.1098/rspb.2017.2550
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1111/2041-210X.13129
https://doi.org/10.1111/2041-210X.13129

