99 research outputs found

    The proteins of intra-nuclear bodies: a data-driven analysis of sequence, interaction and expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cajal bodies, nucleoli, PML nuclear bodies, and nuclear speckles are morpohologically distinct intra-nuclear structures that dynamically respond to cellular cues. Such nuclear bodies are hypothesized to play important regulatory roles, e.g. by sequestering and releasing transcription factors in a timely manner. While the nucleolus and nuclear speckles have received more attention experimentally, the PML nuclear body and the Cajal body are still incompletely characterized in terms of their roles and protein complement.</p> <p>Results</p> <p>By collating recent experimentally verified data, we find that almost 1000 proteins in the mouse nuclear proteome are known to associate with one or more of the nuclear bodies. Their gene ontology terms highlight their regulatory roles: splicing is confirmed to be a core activity of speckles and PML nuclear bodies house a range of proteins involved in DNA repair. We train support-vector machines to show that nuclear proteins contain discriminative sequence features that can be used to identify their intra-nuclear body associations. Prediction accuracy is highest for nucleoli and nuclear speckles. The trained models are also used to estimate the full protein complement of each nuclear body. Protein interactions are found primarily to link proteins in the nuclear speckles with proteins from other compartments. Cell cycle expression data provide support for increased activity in nucleoli, nuclear speckles and PML nuclear bodies especially during S and G<sub>2 </sub>phases.</p> <p>Conclusions</p> <p>The large-scale analysis of the mouse nuclear proteome sheds light on the <it>functional </it>organization of <it>physically </it>embodied intra-nuclear compartments. We observe partial support for the hypothesis that the physical organization of the nucleus mirrors functional modularity. However, we are unable to unambiguously identify proteins' intra-nuclear destination, suggesting that critical drivers behind of intra-nuclear translocation are yet to be identified.</p

    Prediction of protein continuum secondary structure with probabilistic models based on NMR solved structures

    Get PDF
    BACKGROUND: The structure of proteins may change as a result of the inherent flexibility of some protein regions. We develop and explore probabilistic machine learning methods for predicting a continuum secondary structure, i.e. assigning probabilities to the conformational states of a residue. We train our methods using data derived from high-quality NMR models. RESULTS: Several probabilistic models not only successfully estimate the continuum secondary structure, but also provide a categorical output on par with models directly trained on categorical data. Importantly, models trained on the continuum secondary structure are also better than their categorical counterparts at identifying the conformational state for structurally ambivalent residues. CONCLUSION: Cascaded probabilistic neural networks trained on the continuum secondary structure exhibit better accuracy in structurally ambivalent regions of proteins, while sustaining an overall classification accuracy on par with standard, categorical prediction methods

    PhosphoPICK-SNP: quantifying the effect of amino acid variants on protein phosphorylation

    Get PDF
    Motivation: Genome-wide association studies are identifying single nucleotide variants (SNVs) linked to various diseases, however the functional effect caused by these variants is often unknown. One potential functional effect, the loss or gain of protein phosphorylation sites, can be induced through variations in key amino acids that disrupt or introduce valid kinase binding patterns. Current methods for predicting the effect of SNVs on phosphorylation operate on the sequence content of reference and variant proteins. However, consideration of the amino acid sequence alone is insufficient for predicting phosphorylation change, as context factors determine kinase-substrate selection

    Assigning roles to DNA regulatory motifs using comparative genomics

    Get PDF
    Motivation: Transcription factors (TFs) are crucial during the lifetime of the cell. Their functional roles are defined by the genes they regulate. Uncovering these roles not only sheds light on the TF at hand but puts it into the context of the complete regulatory network

    Associating transcription factor-binding site motifs with target GO terms and target genes

    Get PDF
    The roles and target genes of many transcription factors (TFs) are still unknown. To predict the roles of TFs, we present a computational method for associating Gene Ontology (GO) terms with TF-binding motifs. The method works by ranking all genes as potential targets of the TF, and reporting GO terms that are significantly associated with highly ranked genes. We also present an approach, whereby these predicted GO terms can be used to improve predictions of TF target genes. This uses a novel gene-scoring function that reflects the insight that genes annotated with GO terms predicted to be associated with the TF are more likely to be its targets. We construct validation sets of GO terms highly associated with known targets of various yeast and human TF. On the yeast reference sets, our prediction method identifies at least one correct GO term for 73% of the TF, 49% of the correct GO terms are predicted and almost one-third of the predicted GO terms are correct. Results on human reference sets are similarly encouraging. Validation of our target gene prediction method shows that its accuracy exceeds that of simple motif scanning

    DLocalMotif: a discriminative approach for discovering local motifs in protein sequences

    Get PDF
    Motivation: Local motifs are patterns of DNA or protein sequences that occur within a sequence interval relative to a biologically defined anchor or landmark. Current protein motif discovery methods do not adequately consider such constraints to identify biologically significant motifs that are only weakly over-represented but spatially confined. Using negatives, i.e. sequences known to not contain a local motif, can further increase the specificity of their discovery

    STAR: predicting recombination sites from amino acid sequence

    Get PDF
    BACKGROUND: Designing novel proteins with site-directed recombination has enormous prospects. By locating effective recombination sites for swapping sequence parts, the probability that hybrid sequences have the desired properties is increased dramatically. The prohibitive requirements for applying current tools led us to investigate machine learning to assist in finding useful recombination sites from amino acid sequence alone. RESULTS: We present STAR, Site Targeted Amino acid Recombination predictor, which produces a score indicating the structural disruption caused by recombination, for each position in an amino acid sequence. Example predictions contrasted with those of alternative tools, illustrate STAR'S utility to assist in determining useful recombination sites. Overall, the correlation coefficient between the output of the experimentally validated protein design algorithm SCHEMA and the prediction of STAR is very high (0.89). CONCLUSION: STAR allows the user to explore useful recombination sites in amino acid sequences with unknown structure and unknown evolutionary origin. The predictor service is available from

    The value of position-specific priors in motif discovery using MEME

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Position-specific priors have been shown to be a flexible and elegant way to extend the power of Gibbs sampler-based motif discovery algorithms. Information of many types–including sequence conservation, nucleosome positioning, and negative examples–can be converted into a prior over the location of motif sites, which then guides the sequence motif discovery algorithm. This approach has been shown to confer many of the benefits of conservation-based and discriminative motif discovery approaches on Gibbs sampler-based motif discovery methods, but has not previously been studied with methods based on expectation maximization (EM).</p> <p>Results</p> <p>We extend the popular EM-based MEME algorithm to utilize position-specific priors and demonstrate their effectiveness for discovering transcription factor (TF) motifs in yeast and mouse DNA sequences. Utilizing a discriminative, conservation-based prior dramatically improves MEME's ability to discover motifs in 156 yeast TF ChIP-chip datasets, more than doubling the number of datasets where it finds the correct motif. On these datasets, MEME using the prior has a higher success rate than eight other conservation-based motif discovery approaches. We also show that the same type of prior improves the accuracy of motifs discovered by MEME in mouse TF ChIP-seq data, and that the motifs tend to be of slightly higher quality those found by a Gibbs sampling algorithm using the same prior.</p> <p>Conclusions</p> <p>We conclude that using position-specific priors can substantially increase the power of EM-based motif discovery algorithms such as MEME algorithm.</p
    corecore