27 research outputs found

    Integrative taxonomy approach to detect spatial and temporal variability of the Mediterranean benthic communities through artificial substrate units (ASUs)

    Get PDF
    Monitoring spatial and temporal changes of marine benthic communities using standardized procedures is essential to take necessary steps towards conservation of marine ecosystems. In this study we combined Artificial Substrate Units (ASUs) for sampling of benthic communities, with integrative taxonomy approach that incorporated morphological identification of organisms and COI DNA metabarcoding, to characterize the diversity of communities at three locations across the Central Mediterranean Sea (Livorno and Palinuro, Italy; Rovinj, Croatia) in 2019 and 2020. Significant differences in the communities’ structure were observed both at large spatial scale between sampled locations, and at small spatial scale (less than ten kilometers) between sites. Moreover, significant temporal variability in species richness and structure of benthic assemblages was detected, with higher richness in 2020. Revealed variability can probably be attributed to the peculiar geomorphological, oceanographical, and ecological features of locations, but also to the influence of interplaying local chemical and physical factors and biological processes such as species settlement, competition, and migration that can act at small spatial and temporal scales. The similarity in the species composition and community structure accessed by morphological and metabarcoding approaches was low,with only 16% of the species (out of 133 species identified overall) commonly detected by both approaches. This is mostly both due to a lack of data on COI sequences of numerous benthic invertebrates in the public barcoding databases on the one hand, and difficulties in detecting small and cryptic taxa through morphological analyses on the other. This suggests that combining of two approaches is required to fully describe the biodiversity of benthic assemblages. Finally, comparison of the spatial variability of the benthic communities’ structure with two approaches at different taxonomic levels, indicated that genus and family levels give results that are consistent to those obtained by the species level. This suggests that family level might be satisfactory in monitoring the spatial-temporal variability of Mediterranean hard bottom benthic communities

    The Environmental Effects of the Innovative Ejectors Plant Technology for the Eco-Friendly Sediment Management in Harbors

    Get PDF
    A sediment bypassing plant based on innovative jet pump, ejectors, has been tested in the first-of-a-kind demo application at the harbor of Cervia (Italy, Northern Adriatic Sea). The ejector is a jet pump aimed to reduce sediment accumulation in navigation channels and coastal areas. Herein we present results of the first study assessing the potential ecological effects of the ejectors plant. Sediment characteristics, benthic, and fish assemblages before and after the plant activation have been analyzed in the putatively impacted (the sediment removal and discharge) areas and four control locations, one time before and two times after plant activation. Ejectors plant operation resulted in a reduction of the mud and organic matter content in the sediment, as well as in changes in shell debris amount in the impacted areas. Abundance and species richness of benthic macroinvertebrates, initially reduced in the impacted areas, probably due to the previous repeated dredging, returned to higher values during demo plant continuous operation. Higher diversity of fish fauna was observed in the study area during plant operation period. Observed dynamics of the ecological status of the marine habitat suggest that an ejectors plant could represent an eco-friendly solution alternative to dredging operations to solve harbor siltation problems

    The effects of an invasive seaweed on native communities vary along a gradient of land-based human impacts

    Get PDF
    The difficulty in teasing apart the effects of biological invasions from those of other anthropogenic perturbations has hampered our understanding of the mechanisms underpinning the global biodiversity crisis. The recent elaboration of global-scale maps of cumulative human impacts provides a unique opportunity to assess how the impact of invaders varies among areas exposed to different anthropogenic activities. A recent meta-analysis has shown that the effects of invasive seaweeds on native biota tend to be more negative in relatively pristine than in human-impacted environments. Here, we tested this hypothesis through the experimental removal of the invasive green seaweed, Caulerpa cylindracea, from rocky reefs across the Mediterranean Sea. More specifically, we assessed which out of land-based and sea-based cumulative impact scores was a better predictor of the direction and magnitude of the effects of this seaweed on extant and recovering native assemblages. Approximately 15 months after the start of the experiment, the removal of C. cylindracea from extant assemblages enhanced the cover of canopy-forming macroalgae at relatively pristine sites. This did not, however, result in major changes in total cover or species richness of native assemblages. Preventing C. cylindracea re-invasion of cleared plots at pristine sites promoted the recovery of canopyforming and encrusting macroalgae and hampered that of algal turfs, ultimately resulting in increased species richness. These effects weakened progressively with increasing levels of land-based human impacts and, indeed, shifted in sign at the upper end of the gradient investigated. Thus, at sites exposed to intense disturbance from land-based human activities, the removal of C. cylindracea fostered the cover of algal turfs and decreased that of encrusting algae, with no net effect on species richness. Our results suggests that competition from C. cylindracea is an important determinant of benthic assemblage diversity in pristine environments, but less so in species-poor assemblages found at sites exposed to intense disturbance from landbased human activities, where either adverse physical factors or lack of propagules may constrain the number of potential native colonizers. Implementing measures to reduce the establishment and spread of C. cylindracea in areas little impacted by land-based human activities should be considered a priority for preserving the biodiversity of Mediterranean shallow rocky reefs

    Diversity and Distribution Patterns of Hard Bottom Polychaete Assemblages in the North Adriatic Sea (Mediterranean)

    Get PDF
    The knowledge on the hard bottom polychaete assemblages in the Northern Adriatic Sea, a Mediterranean region strongly affected by environmental pressures, is scarce and outdated. The objective of this paper was to update the information on polychaete diversity and depict their patterns of natural spatial variation, in relation to changes in algal coverage at increasing depth. Hard bottom benthos was quantitatively sampled by scraping off the substrate from three stations at Sveti Ivan Island (North Adriatic) at three depths (1.5 m, 5 m and 25 m). Polychaete fauna comprised 107 taxa (the majority of them identified at species level) belonging to 22 families, with the family Syllidae ranking first in terms of number of species, followed by Sabellidae, Nereididae, Eunicidae and Serpulidae. Considering the number of polychaete species and their identity, the present data differed considerably from previous studies carried out in the area. Two alien species, Lepidonotus tenuisetosus, which represented a new record for the Adriatic Sea, and Nereis persica, were recorded. The highest mean abundance, species diversity and internal structural similarity of polychaete assemblages were found at 5 m depth, characterised by complex and heterogeneous algal habitat. The DISTLM forward analysis revealed that the distribution of several algal taxa as well as some algal functional-morphological groups significantly explained the observed distribution patterns of abundance and diversity of polychaete assemblages. The diversity of the North Adriatic hard bottom polychaete fauna is largely underestimated and needs regular updating in order to detect and monitor changes of benthic communities in the area

    A complex species complex: The controversial role of ecology and biogeography in the evolutionary history of Syllis gracilis Grube, 1840 (Annelida, Syllidae)

    Get PDF
    The cryptic diversity in the polychaete Syllis gracilis Grube, 1840, in the Mediterranean Sea was examined with an integrative morpho-molecular approach. Individuals of S. gracilis were collected at eleven Mediterranean localities to provide an insight into the role of brackish environments in inducing cryptic speciation. The examination of morphological features combined with a molecular genetic analysis based on a partial sequence of the 16S rRNA gene highlighted discrepancies between morphological and molecular diversity. Morphological data allowed to identify a morphotype with short appendages occurring in coralline algae communities and another one with long appendages observed in brackish-water environments and Sabellaria reefs. Multivariate analyses showed that sampling localities were the greatest source of morphological divergence, suggesting that phenotypic plasticity may play a role in local adaptations of S. gracilis populations. Molecular data showed the occurrence of four divergent lineages not corresponding to morphological clusters. Different species delimitation tests gave conflicting results, retrieving, however, at least four separated entities. Some lineages occurred in sympatry and were equally distributed in marine and brackish-water environments, excluding a biogeographic or ecological explanation of the observed pattern and suggesting instead ancient separation between lineages and secondary contact. The co-occurrence of different lineages hindered the identification of the lineage corresponding to S. gracilis sensu stricto. The discrepancy between morphological and molecular diversity suggests that different environmental and biogeographic features may interact in a complex and unpredictable way in shaping diversity patterns. An integrative approach is needed to provide a satisfactory insight on evolutionary processes in marine invertebrates

    Metal Nanoparticles Deposited on Porous Silicon Templates as Novel Substrates for SERS

    Get PDF
    In this paper, results on preparation of stable and uniform SERS solid substrates using macroporous silicon (pSi) with deposited silver and gold are presented. Macroporous silicon is produced by anodisation of p-type silicon in hydrofluoric acid. The as prepared pSi is then used as a template for Ag and Au depositions. The noble metals were deposited in three different ways: by immersion in silver nitrate solution, by drop-casting silver colloidal solution and by pulsed laser ablation (PLA). Substrates obtained by different deposition processes were evaluated for SERS efficiency using methylene blue (MB) and rhodamine 6G (R6G) at 514.5, 633 and 785 nm. Using 514.5 nm excitation and R6G the limits of detection (LOD) for macroporous Si samples with noble metal nanostructures obtained by immersion of pSi sample in silver nitrate solution and by applying silver colloidal solution to pSi template were 10–9 M and 10–8 M respectively. Using 633 nm laser and MB the most noticeable SERS activity gave pSi samples ablated with 30000 and 45000 laser pulses where the LODs of 10–10 M were obtained. The detection limit of 10–10 M was also reached for 4 mA cm–2-15 min pSi sample, silver ablated with 30000 pulses. Macroporous silicon proved to be a good base for the preparation of SERS substrates

    Integrative taxonomy approach to detect spatial and temporal variability of the Mediterranean benthic communities through artificial substrate units (ASUs)

    Get PDF
    Monitoring spatial and temporal changes of marine benthic communities using standardized procedures is essential to take necessary steps towards conservation of marine ecosystems. In this study we combined Artificial Substrate Units (ASUs) for sampling of benthic communities, with integrative taxonomy approach that incorporated morphological identification of organisms and COI DNA metabarcoding, to characterize the diversity of communities at three locations across the Central Mediterranean Sea (Livorno and Palinuro, Italy; Rovinj, Croatia) in 2019 and 2020. Significant differences in the communities’ structure were observed both at large spatial scale between sampled locations, and at small spatial scale (less than ten kilometers) between sites. Moreover, significant temporal variability in species richness and structure of benthic assemblages was detected, with higher richness in 2020. Revealed variability can probably be attributed to the peculiar geomorphological, oceanographical, and ecological features of locations, but also to the influence of interplaying local chemical and physical factors and biological processes such as species settlement, competition, and migration that can act at small spatial and temporal scales. The similarity in the species composition and community structure accessed by morphological and metabarcoding approaches was low, with only 16% of the species (out of 133 species identified overall) commonly detected by both approaches. This is mostly both due to a lack of data on COI sequences of numerous benthic invertebrates in the public barcoding databases on the one hand, and difficulties in detecting small and cryptic taxa through morphological analyses on the other. This suggests that combining of two approaches is required to fully describe the biodiversity of benthic assemblages. Finally, comparison of the spatial variability of the benthic communities’ structure with two approaches at different taxonomic levels, indicated that genus and family levels give results that are consistent to those obtained by the species level. This suggests that family level might be satisfactory in monitoring the spatial-temporal variability of Mediterranean hard bottom benthic communities
    corecore