7 research outputs found

    Inferring monopartite projections of bipartite networks: an entropy-based approach

    Get PDF
    Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users' ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated.Comment: 16 pages, 9 figure

    Anomalous dynamical scaling in anharmonic chains and plasma models with multiparticle collisions

    Get PDF
    We study the anomalous dynamical scaling of equilibrium correlations in one dimensional systems. Two different models are compared: the Fermi-Pasta-Ulam chain with cubic and quartic nonlinearity and a gas of point particles interacting stochastically through the multiparticle collision dynamics. For both models -that admit three conservation laws- by means of detailed numerical simulations we verify the predictions of nonlinear fluctuating hydrodynamics for the structure factors of density and energy fluctuations at equilibrium. Despite this, violations of the expected scaling in the currents correlation are found in some regimes, hindering the observation of the asymptotic scaling predicted by the theory. In the case of the gas model this crossover is clearly demonstrated upon changing the coupling constant.Comment: 12 pages, 8 figures. Matching the version published in Phys. Rev.

    Inferring monopartite projections of bipartite networks: an entropy-based approach

    No full text
    Bipartite networks are currently regarded as providing a major insight into the organization of many real-world systems, unveiling the mechanisms driving the interactions occurring between distinct groups of nodes. One of the most important issues encountered when modeling bipartite networks is devising a way to obtain a (monopartite) projection on the layer of interest, which preserves as much as possible the information encoded into the original bipartite structure. In the present paper we propose an algorithm to obtain statistically-validated projections of bipartite networks, according to which any two nodes sharing a statistically-significant number of neighbors are linked. Since assessing the statistical significance of nodes similarity requires a proper statistical benchmark, here we consider a set of four null models, defined within the exponential random graph framework. Our algorithm outputs a matrix of link-specific p-values, from which a validated projection is straightforwardly obtainable, upon running a multiple hypothesis testing procedure. Finally, we test our method on an economic network (i.e. the countries-products World Trade Web representation) and a social network (i.e. MovieLens, collecting the users' ratings of a list of movies). In both cases non-trivial communities are detected: while projecting the World Trade Web on the countries layer reveals modules of similarly-industrialized nations, projecting it on the products layer allows communities characterized by an increasing level of complexity to be detected; in the second case, projecting MovieLens on the films layer allows clusters of movies whose affinity cannot be fully accounted for by genre similarity to be individuated
    corecore