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Anomalous dynamical scaling in anharmonic chains and plasma models with multiparticle collisions
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We study the anomalous dynamical scaling of equilibrium correlations in one-dimensional systems. Two
different models are compared: the Fermi-Pasta-Ulam chain with cubic and quartic nonlinearity and a gas of
point particles interacting stochastically through multiparticle collision dynamics. For both models—that admit
three conservation laws—by means of detailed numerical simulations we verify the predictions of nonlinear
fluctuating hydrodynamics for the structure factors of density and energy fluctuations at equilibrium. Despite
this, violations of the expected scaling in the currents correlation are found in some regimes, hindering the
observation of the asymptotic scaling predicted by the theory. In the case of the gas model this crossover is
clearly demonstrated upon changing the coupling constant.
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I. INTRODUCTION

Low-dimensional [i.e., one- (1D) and two-dimensional
(2D)] systems where total size, energy, and momentum are the
only conserved quantities, typically exhibit anomalous relax-
ation and transport properties [1–4]. Under these conditions the
standard hydrodynamic description fails, because the transport
coefficients are ill defined in the thermodynamic limit. For
instance, in 2D systems the heat conductivity κ exhibits a
logarithmic divergence with the system size N , while in 1D
systems it turns into a power law,

κ ∼ Nγ . (1)

The value of γ has been estimated by numerical simulations
and various theoretical approaches for different systems. For a
generic nonintegrable and nonlinear 1D system it is assumed
that the scaling exponent takes the universal value γ =
1/3, indicating nondiffusive (anomalous) heat conduction.
Numerical evidence has been found for several systems like
the hard-point gas (HPG), the hard-point chains (HPC) (both
with alternate masses), and the Fermi-Pasta-Ulam (FPU)
α + β model (a Hamiltonian chain of nonlinearly coupled
oscillators, interacting by a leading cubic nonlinearity [1]).
The universality of the γ exponent has been predicted by
different theoretical arguments (e.g., see Refs. [5,6]). More
recently, a complete description has been put forward within
the nonlinear fluctuating hydrodynamics (NFH) approach,
proposed independently by van Beijeren [7] and Spohn [8,9].
These authors have shown that the statistical properties of
1D nonlinear hydrodynamics with three conservation laws
(e.g., total energy, momentum, and number of particles) are
essentially described by the fluctuating Burgers equation for
the field �(x,t) with white noise Z ,

∂t� + c�∂x� = ν∂2
xx� +

√
2ν∂xZ, (2)
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where ν is a diffusion coefficient and c the scale velocity
of advection. Equation (2), on its side, can be mapped onto
the well-known Kardar-Parisi-Zhang (KPZ) equation for the
stochastic growth of interfaces [10]. By exploiting this formal
equivalence between different problems, one can conclude
that anomalous relaxation and transport in 1D systems can
be traced back to the superdiffusive behavior of density
fluctuations imposed by the constrained dynamics.

However, there exist counterexamples of models with the
three aforementioned conservation laws that depart from such
universal behavior for different intrinsic reasons. For instance,
integrable models, like a chain of harmonic oscillators and
the Toda lattice, exhibit ballistic transport (i.e., κ ∼ N ), since
energy is transmitted through the chain by the undamped prop-
agation of eigenmodes (phonons and solitons, respectively
[11,12]). Moreover, for systems in which the local symmetry of
particle displacements with respect to the equilibrium position
is restored, the exponent γ takes higher values, e.g., 2/5 or
1/2, depending on the model at hand. It has been argued
that this case belongs to a different universality class. This
has been tested numerically in the FPU-β model, where the
displacement symmetry is a straightforward consequence of
a purely quartic nonlinearity [13–15], in the hard-point-chain
model at zero pressure [16], and in the FPU-α + β model,
where the displacement symmetry can be imposed by applying
suitable pressure at the chain boundaries [17]. It has been
further pointed out that such a case corresponds to the
special thermodynamic condition, for which the specific heat
capacities at constant volume and pressure are equal [18]. A
further remarkable example belonging to this class is provided
by the harmonic chain subject to a conservative noise, where
deterministic dynamics coexist with random collisions among
oscillators preserving momentum and energy. In this case, it
has been rigorously proved that γ = 1/2 [19–21].

An interesting example of normal conduction in nonlinear
systems is the rotor chain that can be thought as the 1D
dynamical version of the XY model. Numerical studies [22,23]
and recent calculations based on the NFH approach [9,24,25]
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predict finite κ for such a model in the thermodynamic limit.
This is not surprising for a twofold reason: (i) in the rotor
chain, only energy and momentum are conserved quantities,
while the “length” is not, because the cosinelike interaction
potential depends on angle variables, whose relative phase can
change by ±2π without any consequence on the dynamics,
and (ii) due to the boundedness of the potential, at any finite
value of the energy density there are energy fluctuations
that allow some rotors to overtake the potential barrier and
produce spontaneously localized excitations (the so-called
rotobreathers), that behave like effective scatterers for long-
wavelength (i.e., hydrodynamic) fluctuations, thus restoring
conditions of normal diffusion.

It also deserves to be mentioned that both classical and
quantum chains with long-range couplings always show
anomalous behavior in energy transport. In this case, the
deviation from the normal heat diffusion as described by
the classical Fourier law has to be attributed to the nonlocal
nature of the interaction [26] rather than to the dimensionality
of the system. In particular, such models appear to trap large
fractions of the total energy into one or more degrees of
freedom for long times [27,28], thus yielding subdiffusive
transport.

All of these results indicate that deviations from universality
may emerge in 1D transport and range from normal diffusion to
ballistic transport depending on specific additional symmetries
or dynamical mechanisms at work.

Recently, this complex scenario turned to a true puzzle,
because careful numerical experiments reported that normal
heat conductivity can be observed in models in which the
universal exponent γ = 1/3 is expected to hold [29,30]. The
main claim of the authors of these works is that, at variance
with the predictions of NFH and of previous theoretical
approaches, normal heat conductivity should characterize all
1D lattice models with asymmetric potentials. Such a situation
has been observed for the FPU-α + β model and for chains
of oscillators coupled through a Lennard-Jones potential [31].
The authors provided an explanation of their results by arguing
that the scattering of long-wavelength phonons could be
attributed to the spontaneous formation of macroscopic mass
gradients along the chain, typical of asymmetric interaction
potentials acting between nonlinear oscillators [32]. The same
authors also speculated that the exponent γ = 1/3 is observed
in the HPG, because in a gaslike model the asymmetry of the
interaction is much less effective in producing macroscopic
density fluctuations. A similar conjecture was invoked to
explain why the exponent γ = 1/3 is observed numerically
in models with asymmetric potential when some parameter,
e.g., the energy or the strength of the nonlinearity, is varied.
For instance, in the FPU-α + β model the universal anomalous
scaling observed for large values of the energy seems to turn to
normal transport conditions in the low-energy regime. These
puzzling results were confirmed also by numerical simulations
performed in nonequilibrium conditions by studying stationary
states in the presence of heat baths acting at the chain
boundaries [33].

In view of these findings, further numerical studies were
triggered. Das, Dhar, and Narayan [34]; Wang, Hu, and Li
[35], and Savin and Kosevich [36] repeated the same kind
of simulations and concluded that finite heat conductivity is

actually a finite-size effect and does not correspond to the
expected universal scaling behavior that should be attained in
the thermodynamic limit. In practice, the seemingly normal
diffusion observed in certain dynamical regimes of nonlinear
lattices with asymmetric interaction should crossover to the
power-law scaling γ = 1/3 for sufficiently large sizes and
sufficiently long times.

As a matter of fact, it is still quite difficult to check the
crossover in this class of lattice models, because finite-size
effects may change sharply by orders of magnitude when a
model parameter, like energy or strength of nonlinear coupling,
is varied. As we are going to discuss, this is a major drawback
of nonlinear oscillator models. In this paper, we explore
this matter further by studying the FPU-α + β model and
showing that predictions of the NFH are verified for the
structure factors associated to density fluctuations in a range of
parameter (i.e., energy) values, where the thermal conductivity
κ exhibits the crossover from anomalous (low-energy) to
normal (high-energy) transport.

From the side of systems of particles interacting via long-
range forces (e.g., plasmas or self-gravitating systems), the
problem of the crossover from normal to anomalous diffusion
is even more complicated, as such systems live for long times in
states that are out of equilibrium (the so-called quasistationary
states [37]). In addition, the dynamics of plasmas (as well as of
gravitational systems) is principally dominated by mean-field
effects rather than by interparticle collisions due to the long-
range nature of the 1/r2 force. Moreover, the large number of
particles in such systems forces to naturally adopt a description
in the continuum collisionless limit in terms of the phase-
space distribution function f (r,v,t) through the collisionless
Boltzmann or Vlasov equation (CBE) [38],

∂tf + v · ∇rf + F · ∇vf = 0, (3)

with self-consistent fields F. Therefore, the numerical mod-
eling of long-range interacting systems is usually carried
out with schemes based on the CBE, such as the widely
used particle-in-cell (PIC) [39]. However, the contribution of
collisions to the energy transport is not negligible in certain
environments (e.g., hot cores in tokamak fusion plasmas [40]
and dense galactic nuclei [41]).

In this work we also study a simplified model of a 1D
collisional plasma of particles interacting via an effective
Coulomb-like interaction based on the multiparticle collision
(MPC) scheme, inspired by phenomenological models adopted
in plasma physics [42,43]. MPC simulations, previously
used to study hydrodynamic correlations [44–46] and the
fluctuation-dissipation theorem [47] in fluid dynamics, have
the advantage of being carried out in a gaslike model, where the
typical excitations yielding large density fluctuations typical
of lattice models can be neglected.

The rest of the paper is structured as follows. In Sec. II we
introduce the most important quantities that will be used to
study the results of the numerical simulations in the context of
the Fermi-Pasta-Ulam system, while in Sec. III, we describe
the MPC plasma model and we show that it allows better
control of the crossover region, confirming that normal heat
conductivity is due to a finite-size effect. Moreover, we
discuss the possible implementation of the MPC method in
standard mesh-based plasma codes and we study the interplay
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between collisions and mean-field effects. Finally, in Sec. IV
we summarize and discuss a possible interpretation of the
similarities and analogies of the models analyzed in this paper.

II. FPU-α + β CHAIN

A. Model

We consider a system of N particles of equal mass m = 1,
arranged in a one-dimensional lattice. Let xi be the position
of the i-th particle. Assuming that interactions are restricted
to nearest-neighbor pairs, the equations of motion for such a
system read

ẍi = −Fi + Fi−1; Fi = −V ′(xi+1 − xi), (4)

where V ′(z) is a shorthand notation for the first derivative of
the the interparticle potential V with respect to z. The particles
are confined in a simulation box of length L with periodic
boundary conditions

xi+N = xi + L. (5)

The FPU-α + β potential, in suitable units, is

V (z) = 1

2
(z − a)2 + α

2
(z − a)3 + β

2
(z − a)4. (6)

Throughout this paper we take units such that β = 1 and we
only consider cases in which 0 < α � 1, so the resulting
potential is always single welled. Note that FPU-α models
(i.e., β = 0) are excluded from this discussion as they admit
runaway solutions for long integration times.

Considering a periodic simulation interval with L = Na,
where a is the equilibrium distance between two neighboring
oscillators, we can set xi = ia + ui , ui being the displacement
from the equilibrium position. With such a choice, widely used
in the literature [48], Eq. (4) becomes

üi = ui+1 + ui−1 − 2ui

+α[(ui+1 − ui)
2 − (ui−1 − ui)

2]

+ (ui+1 − ui)
3 − (ui − ui−1)3, (7)

and the periodic boundary condition now reads uN+i = ui . At
site i, the local particle energy is defined as

Ei = 1

2
u̇2

i + 1

2
(ui+1−ui)

2 + α

3
(ui+1−ui)

3 + 1

4
(ui+1−ui)

4.

(8)
Note that the interparticle distance a disappears from the
equations above thus being a completely arbitrary quantity.

In order to study the dynamical scaling of the correlations
of the energy, and relate them to the thermal conductivity, we
introduce the Green-Kubo formula [49]

κ = D

kBT 2N

∫ ∞

0
cJ (t)dt, (9)

written here for a finite system of size N . In the equation above,
kB is the Boltzmann constant, T the system temperature,
and D a dimensional constant. Finally, the quantity cJ (t) =
〈J (t ′)J (t ′ − t)〉 is the time correlation function of the energy
current J (t), defined as

J (t) = 1

2

N∑
i=1

(u̇i+1 + u̇i) Fi. (10)

In addition, one also can define in the same fashion the
momentum current as

JP (t) =
N∑

i=1

Fi. (11)

For computational reasons, it is convenient to work in the
Fourier space. By taking the modulus square of the time-
Fourier transform of the energy density current we define

CE (ω) = 〈|Ĵ (ω)|2〉, (12)

where 〈. . . 〉 denotes the average over a set of independent
molecular dynamics runs. In the linear response regime, an
estimate of the exponent γ is obtained by fitting the low-
frequency part of the spectra by an inverse power law, CE (ω) ∝
ω−γ [1]. Note that the equivalent quantities CP (ω) and
Cρ(ω) associated to the momentum and density (displacement)
currents are constructed in a similar fashion.

In the spirit of NFH theory, it is also of interest to study
dynamical scaling of the different modes of structure factors.
In order to do so, we first perform the discrete space-Fourier
transform of the particles displacement,

û(k,t) = 1

N

N∑
l=1

ul exp(−ıkl). (13)

The dynamical structure factor S(k,ω) is defined as the
modulus squared of the subsequent temporal Fourier transform
and reads

S(k,ω) = 〈|û(k,ω)|2〉. (14)

The energy structure function SE (k,ω) is obtained in the
same way after Fourier-transforming the energy density profile
defined by Eq. (8) as

SE (k,ω) = 〈|Ê(k,ω)|2〉. (15)

Since we are working with periodic boundary conditions, the
allowed values of the wave number k are always integer
multiples of 2π/N , therefore in the rest of the paper we
will sometimes refer to the (integer) normalized wave number
k̃ = kN/2π .

B. Numerical simulations and results

To simulate the system described above, we solve Eqs. (7)
with a numerical code using a fourth-order symplectic integra-
tor [50]. The simulations presented here are microcanonical
(i.e., the system is isolated and energy is, in principle,
conserved) and for fixed α = 0.1. The conservation of energy
and momentum was monitored during a set of preliminary runs
and we find that for N > 100, with a time step �t = 0.01, the
total energy of the system is conserved in the worst case up to
a few parts per million. The initial conditions are implemented
as follows. The N particles of unitary mass are set at their
equilibrium positions, and the initial velocities are extracted
from a Gaussian distribution of unitary width and rescaled by a
suitable factor to assign the desired value of the system specific
energy per particle E∗. Usually, a little readjustment is needed
in order to set the total initial momentum Ptot = ∑

i u̇i equal
to zero. In every case, a transient is elapsed before acquisition
of statistical averages.
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FIG. 1. (Color online) FPU chain: Dynamical structure factor of
the displacements (upper panels) and local energy (lower panels) for
α = 0.1, N = 4096 for different normalized wave numbers k̃ = 2, 4,
8, and 16 and E∗ = 0.1 (left) and 0.5 (right). The curves are averaged
over 1000 independent molecular dynamics runs.

Figure 1 shows the structure factors of displacement S(k,ω)
(upper panels), and energy SE (k,ω) (lower panels) for N =
4096, and different values of the normalized wave number k̃

(with k̃ � N ) and two values of the specific energy (i.e., E∗ =
0.1, 0.5). For all values of k̃, S(k,ω) shows a sharp peak, whose
position is proportional to the sound speed of the ballistic
modes cs as ωmax = csk. On the other hand, SE (k,ω) presents
for all the explored values of the wave number a prominent
peak at low ω and a sharper second peak around csk. Note
that the low-frequency peak appears broadened due to the
logarithmic scale used in the plots.

According to the NFH theory [8], correlations in the large
time and space scale should obey dynamical scaling of the
KPZ equation. The structure factor S(k,ω) for small-enough k

and ω ≈ ±ωmax should scale with the frequency ω as

S(k,ω) ∼ hKPZ

(
ω ± ωmax

λsk3/2

)
. (16)

Moreover, by assuming that the low-frequency part is domi-
nated by heat modes, one should expect that the scaling of the
energy structure factor SE (k,ω) for ω → 0 behaves as

SE (k,ω) ∼ hLW

(
ω

λhk5/3

)
, (17)

Remarkably, the scaling functions are universal and known
exactly: hKPZ and hLW are the Fourier transforms of, respec-
tively, the KPZ scaling function and the Lèvy characteristic
function of index 5/3 (see Ref. [8] for details). The function
hKPZ is not known in closed form but has to be evaluated
numerically [51] while hLW is, by definition, a Lorentzian.
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FIG. 2. (Color online) FPU chain: Data collapse to the KPZ
scaling function (solid line) of the Fourier spectra of the dynamical
variable u for the modes with k̃ = 4, 8, and 16 for α = 0.1 and
E∗ = 0.1 (left panel) and 0.5 (right panel).

The nonuniversal coefficients λs and λh are model dependent
and can be evaluated in terms of static correlators [8]. A first
positive test of the NFH predictions for the FPU model has
been reported in Ref. [52]. Dynamical scaling is illustrated in
Figs. 2 and 3 that show the data collapse to the theoretical curve
for k̃ = 4, 8, and 16. The predicted scaling functions hKPZ and
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FIG. 3. (Color online) FPU chain: Dynamical scaling for dynam-
ical structure factors of local energy for α = 0.1, N = 4096, and
k̃ = 2, 4, 8, for values of the energy density E∗ = 0.1 (bottom) and
0.5 (top). The thick dashed line marks the Lorentzian characteristic
function (LCF), as predicted by the theory.
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FIG. 4. (Color online) Comparison of λs obtained from dynam-
ical scaling (crosses), MD simulations (triangles), and NFH theory
(solid line). The values of λs from the scaling have been obtained as
averages over the single k modes and the errors have been calculated
accordingly. For this data, all simulations have been performed for
N = 1024 and E∗ = 0.1.

hLW agree very well with the observed line shapes. In order
to test the scaling, data have been rescaled automatically by
extracting the frequency ωmax corresponding to the maximum
of the curve and then shifting it to the origin, while the x axis
has been renormalized according to Eqs. (16) and (17).

In addition, we have performed further tests of the NFH
theory with focus on the nonuniversal prefactor λs . According
to Ref. [8], λs can be explicitly written in terms of equilibrium
averages of connected correlation functions of suitable thermo-
dynamic quantities. In Fig. 4 we report the dependence of λs on
the nonlinearity parameter α [see Eq. (6)] for fixed values of the
system size (N = 1024) and of the specific energy (E∗ = 0.1).
We compare the theoretical predictions with the values ob-
tained for equilibrium averages, estimated by MD simulations,
and the ones extracted by a fit of the structure factor S(k,ω)
with the scaling function in Eq. (16). The numerical MD
results agree with theoretical expectations, whereas the fitted
values deviate significantly. In particular, they underestimate
systematically the theoretical values, despite the fact that the
scaling is quite well satisfied, as shown in Figs. 2 and 3. The
actual peak widths of the dynamical structure factors are thus
much smaller than theoretically predicted. Similar deviations
in the nonuniversal coefficients were reported in Ref. [53].

An unexpected result is presented in Fig. 5 where we plot
CE and CP for the same two values of the specific energy (i.e.,
E∗ = 0.1, 0.5) and N = 4096. At E∗ = 0.5 the CE curves show
a clear ω−1/3 in the low-frequency region before saturating.
This is agreement with expectation that the model should
display anomalous transport. However, for lower energy
density, the behavior is somewhat more complicated with
several slope changes but no evidence of the low-frequency
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FIG. 5. (Color online) Fourier spectra of the total energy and
velocity currents CE (left) and CP (right) for a FPU chain with
N = 4096, α = 0.1. Different curves refer to different values of the
energy density E∗ = 0.1 (lower curves) E∗ = 0.5 (upper curves). Each
curve is averaged over 1000 independent realizations. To guide the
eye, the dashed and solid black curves with the two slopes −1/3 and
−2 have been added to the plot.

singularity. An unequivocal ω−2 trend for high frequencies
can be observed. Also, surprisingly, the CP do not show any
low-frequency singularity (similar saturation was observed
also in Ref. [17]). The origin of this difference is unclear and
rather puzzling in view of the excellent KPZ scaling observed
for the structure factors for both energy values.

In conclusion, the analysis of the structure factors as
well as the test of scaling of the thermal and sound peaks
points towards the success of the mode coupling theory in
treating the hydrodynamics of low-dimensional systems. In
general, anomalous diffusion is thus expected. In addition, the
apparent restoration of normal diffusion in some systems is
to be interpreted only as a combined effect of finite size and
(relatively) short times over which previous numerical works
have been studied.

III. 1D MPC PLASMA

A. MPC method

As we have anticipated in the Introduction, here we extend
our study to the case of one-dimensional collisional plasma
models. Several strategies exist in order to treat collisions
and incorporate their contribution into standard mesh-based
otherwise collisionless numerical codes. For instance, in
the particle-particle-particle-mesh (P3M) method, the usual
technique used to compute the potential on the simulation
grid is refined by additionally computing inside each cell the
direct contribution to the force due to near particles [54,55],
as is also done in Barnes-Hut tree code [56]. Moreover,
hybrid approaches are also available, where either the usual
PIC scheme [57], P3M [58], or a smooth potential method
[59] for the force calculation is combined with Monte Carlo
sweeps in velocity space, thereby restoring the collision term
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in the right-hand side of Boltzmann equation (3). In general,
such methods turn out to be computationally costly since
they involve iterative evaluations of the systems phase-space
distribution function f at each collision step.

In this work, aiming at studying the energy transport
due to interparticle collisions in plasmas, we made use of
a multiparticle collision numerical technique (MPC). The
MPC method, originally introduced by Malevanets and Kapral
[60,61] in the context of mesoscopic dynamics of complex
fluids (e.g., polymers in solution, colloidal fluids), is based
on a stochastic and local protocol that redistributes particle
velocities, while preserving the global conserved quantities
such as total energy, momentum, and angular momentum. The
algorithm (see Refs. [62,63] for a detailed review) is ideally
articulated in three steps:

(1) The system of Np particles is partitioned in Nc cells
where the local center of mass (c.m.) coordinates and velocity
are computed.

(2) Inside each simulation cell the particle velocities are
rotated around a random axis passing through the center of
mass, and the rotation angles are assigned in a way that the
invariant quantities are locally preserved.

(3) All particles are propagated freely or under the effect
of an external force if present.

In this work we consider one-dimensional systems with
periodic boundary conditions. Therefore, inside each cell on
which the system is coarse grained, the conserved quantities
are the linear momentum Pi and the kinetic energy Ki [64].
During the collision step the stochastic velocity shifts wj are
extracted for each particle from a distribution depending on
the cell temperature (see also Ref. [65]), and the conservation
of Pi and Ki reads

Pi =
Ni∑

j=1

mjvj,old =
Ni∑

j=1

mjvj,new

=
Ni∑

j=1

mj (aiwj + bi);

(18)

Ki =
Nj∑
i=1

mj

v2
j,old

2
=

Ni∑
j=1

mj

v2
j,new

2

=
Ni∑

j=1

mj

(aiwj + bi)2

2
,

where Ni is the number of particles in cell i, mj and vj are the
j -th particles mass and velocity, and ai and bi are the unknown
cell-dependent coefficients. Equations (18) constitute a linear
system that can be solved for ai and bi . First, we introduce the
auxiliary quantities

P ∗
i =

Ni∑
j=1

mjwj ; K∗
i =

Ni∑
j=1

mj

w2
j

2
, (19)

and then rescale them, together with Pi and Ei , by the total
mass in cell i, Mi = ∑Ni

j=1 mj :

P̃ ∗
i = P ∗

i /Mi ; P̃i = Pi/Mi ;
(20)

K̃∗
i = K∗

i /Mi ; K̃i = Ki/Mi.

Once setting

σi =
√

2K̃i − P̃ 2
i ; σ ∗

i =
√

2K̃∗
i − ˜P ∗2

i , (21)

after easy algebra, the coefficients ai and bi are obtained as

ai = σi/σ
∗
i ; bi = P̃i − P̃ ∗

i ai, (22)

and the new velocities then read

vj,new = aiwj + bi. (23)

In the propagation step the positions rj are updated and at the
next step a new partitioning of the system is operated, and the
procedure repeats.

So far we have been discussing the MPC method in
the general case. In order to adapt such general scheme to
the modelization of plasmas of charged particles interacting
with Coulomb forces, the velocity sweep protocol has to be
conditioned to a local probability capturing the essence of
the Coulombian scattering at low impact parameters (i.e., of
the order of the cell size). A test particle of mass m and
charge Q, moving at velocity v in a homogeneous background
of particles of the same kind, with number density n and
Maxwellian velocity distribution, experiences on average in
the time interval δt a number of collisions Ncoll = δtωcoll,
where the collision frequency scales as

ωcoll ∝ 8πQ4n ln �

m2|v|3 . (24)

In the expression above the quantity ln � is the so-called
Coulomb logarithm of the maximum and minimum impact
parameters bmax and bmin, whose definitions are somewhat
arbitrary. Usually, in a neutral plasma bmax is the Debye
screening length and bmin the minimum interparticle distance
[66]. Since one has to define a cell-dependent interaction
probability proportional to the local (average) collision fre-
quency, it is tempting to use a cell-averaged collision frequency
〈ωcoll〉, which requires a proper rescaling of the time units so
the product �t〈ωcoll〉 can be used as an effective collision
probability. However, given that the local velocity distribution
may in principle not be Maxwellian, and since the present
model is intended to capture the essence of the problem,
in the simulations presented here, we condition instead the
interaction step to the cell-dependent Coulomb-like interaction
probability [43]

Pi = 1

1 + (K̃i/Eint)2
, (25)

where Eint is a typical interaction energy per unit mass, pro-
portional to n1/3〈Q2〉/〈m〉, where the mass and the (squared)
charge are averaged over the different component of the
system. With such a choice, in a system with a given number
density n, Eint becomes a scale quantity of the simulations
that can be normalized to unity. Note that, a system with
two or more species of particles might have, in principle,
more complex transport properties since the mean collision
frequency strongly depends on the mass (or charge) spectrum,
see e.g. Ref. [67]. Test simulations in which a monocomponent
plasma with initially nonthermal velocity distribution relaxes
to thermal equilibrium have been performed with standard
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molecular dynamics and MPC, both approaches yielding
similar results.

In order to include in the model the effects of the long-
range part of the Coulomb interaction, we could rely on
conventional particle-mesh schemes solving the Poisson and
Ampère equations on the grid to compute the electrostatic
potential and magnetic field. In this work, however, we do not
account for these self-consistent fields.

B. Numerical simulations and results

In the line of previous works [68–73], we investigate
the transport properties of a one-component plasma via its
dynamical structure factors. Since the scope of this paper is to
study and compare transport in low-dimensional models, we
limit ourselves to consider only one-dimensional plasmas in
a static neutralizing background. In analogy with the analysis
of the FPU lattice, we computed for the plasmalike model the
structure factors of kinetic energy, momentum, and density
CE , CP , and Cρ defined as the time-Fourier transforms of the
currents Jξ , associated to the quantity ξ on the simulation grid,
that read

Jξ (t) =
Nc∑
i=1

[ξi(t) − ξi−1(t − �t)]. (26)

The equilibrium initial conditions are implemented as follows:
Np identical particles are homogeneously placed on the
simulation grid and their charges Q and masses m are chosen
so Eint = 1. The initial particles velocities are extracted from
a Maxwellian distribution, adjusted in order to have vanishing
total momentum, and renormalized to obtain the wanted value
of the specific kinetic energy per unit mass Eb. With this
choice we have to tune a single control parameter, the ratio
η = Eb/Eint, that defines the strength of the coupling between
particles in the plasma implemented via Eq. (25).

The particles’ equations of motion are integrated in the
propagation step by a second-order symplectic scheme with
fixed �t . Test simulations activating the self-consistent elec-
trostatic field yield �t = 1/100ωP as the optimal value for
the time step, ensuring energy conservation up to roughly one
part in 105, ωP =

√
nQ2/m being the plasma frequency of

the system in computational units (for the typical simulation
parameters used here ωP ≈ 3).

Figure 6 shows the structure factors of density and energy
for two strongly collisional cases with η = 0.1 and 0.5.

Contrary to the analogous plots for the FPU systems, at
fixed wave number the peak of the density structure factor
(corresponding to that of displacement in the case of FPU) and
the ballistic peak in the energy structure factor are not placed at
the same frequency ω (proportional to the sound speed). This
is mainly due to the fact that in fluid models, contrary to solid,
heat transfer is also due to actual mass transport, since elements
of fluid can overtake each other, and the same energy δE can
be transported between two parts of the system by either a few
energetic particles or a lot fewer energetic particles. In solid
models of oscillators with only nearest-neighbor couplings,
on the other hand, the fluctuations of the displacement u are
proportional to those of particles energy due to the potential
energy V being a function of u.
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FIG. 6. (Color online) MPC model: Dynamical structure factors
of density (upper panels) and local energy (lower panels) for Np =
12 000, Nc = 1200 for the different normalized wave numbers k̃ = 2,
4, 8, and 16 and η = 0.1 (left) and 0.5 (right). The curves are averaged
over 200 independent realizations.

Additionally, we found that as for the FPU system, the
dynamical structure factors of the density Sρ nicely fit with the
KPZ-scaling function for all explored values of η. In Fig. 7,
we show the rescaled curves for η = 0.1 and 0.5 (i.e., highly
collisional systems) and k̃ = 2, 4, 8, 16. Even for a fluidlike
model such as MPC the predictions of NFH hold true for
combinations of parameters associated to both anomalous or
diffusive transport on the time scale of the simulations. This
reinforces the idea that the apparent restoration of the normal
conductivity is a nonasymptotic effect.
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FIG. 7. (Color online) MPC model: Data collapse to the KPZ
scaling function (solid line) of the Fourier spectra of the density
profile modes with k̃ = 2, 4, 8, and 16 for η = 0.1 (left panel) and
0.5 (right panel). The data are from the same calculations presented
in Fig. 8 (red and green curves).
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FIG. 8. (Color online) MPC model: From left to right, Fourier spectra CE , CP , and Cρ of the energy, momentum, and density currents for
η = 0.1, 0.5, 1, and 5 and Nc = 1200. The curves are averaged over 200 independent realizations. The crossover from the ω−1/3 to the ω−2

behavior of CE at around η = 0.5 is evident. To guide the eye, the dashed and solid black curves with the two slopes −1/3 and −2 have been
added to the plot.

In Fig. 8 we present the Fourier spectra CE , CP , and Cρ of
the energy, momentum [74], and density currents, respectively,
for four typical values of the ratio η = 0.1, 0.5, 1, and
5 and for Np = 12 000 particles distributed on Nc = 1200
cells. Each simulation is extended up to tf = 219�t . For
strongly interacting systems (i.e., η � 0.1) one recovers the
ω−1/3 behavior of the energy correlator CE . Increasing the
particle-specific kinetic energy at fixed Eint (i.e., reducing the
collisionality of the system), CE shows a more and more pro-
minent flat region at low frequencies departing form the
ω−1/3 trend and a high-frequency tail with slope ω−2. This
fact could be naively interpreted as the restoration of normal
conductivity. However, one has to bear in mind that the curves
are plotted over the same frequency interval. It is therefore
only a finite-time effect induced by the longer relaxation times
of the fluctuations, due to the lower coupling in this regime.
The crossover from the ω−1/3 to the ω−2 behavior of CE is
evident at around η = 0.5. Remarkably, the Fourier spectrum
of the momentum current CP (central panel, same figure) has
the same slope of CE at fixed η. A different behavior is instead
found for the density correlator Cρ , showing instead a ω−0.45

slope in the central part and a ω−2 tail at large ω.

IV. CONCLUSIONS AND PERSPECTIVES

We have compared the anomalous transport properties
emerging in 1D models of a nonlinear solid, namely the
FPU chain (with leading cubic nonlinearity), and a gas of
particles subject to an effective Coulomb interaction. On the
basis of NFH [7], both models belong to the same universality
class, namely their heat conductivities are expected to exhibit

a power-law divergence with the system size as κ ∼ N1/3.
Our study confirms that for both models the scaling properties
predicted by NFH are very well recovered for both the heat
and sound modes structure factors in a wide range of energies.

On the other hand, our analysis has unveiled discrepancies
concerning the numerical results and theoretical predictions
of the nonuniversal scaling coefficient λs . Moreover, some
significant deviations and crossovers have been observed for
some parameters in the current correlators, which decay much
faster than predicted. This should be compared with Refs. [29]
that challenged the predictions of the NFH theory by claiming
that thermal conductivity could turn to a normal behavior in the
low-energy region of oscillators chain. Our results, along with
Refs. [8,75], suggest instead that this puzzling phenomenon
should be attributed to dramatic finite-size and -time effects,
rather than assuming that normal conduction should char-
acterize the asymptotic transport properties of lattices with
asymmetric interaction potentials. This is particularly evident
for the MPC gas where structure factors again exhibit the
scaling predicted by NFH over a wide range of values of
the control parameter (the interaction energy Eint) whereby a
clear crossover is seen in the current spectra upon reducing
the collisionality of the particles (see again the first panel
of Fig. 8). However, the physical origin of the effect is yet
unexplained. It may be traced back to spontaneous localized
density fluctuations typical of nonlinear solid models, where
particles are not allowed to overtake each other or, more
generally, from other slow excitations not included in the FHD
description. It is also to be understood how this should affect
some correlation functions but not others. In addition, it must
be pointed out that for symmetric interparticle potentials (e.g.,
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FPU-β) a different scaling from the KPZ one is expected, as
well as higher values of the exponent γ [9,13,16].

Although the MPC model was introduced here to test the
NFH prediction in 1D, we point out that such a protocol can
be easily extended to a wide range of transport problems in
any dimension. In particular, it should be mentioned that in
both plasma physics and stellar dynamics there are examples
of systems in which the contribution of the particle collisions
to their dynamical evolution and transport properties is non-
negligible. For example, in the context of the frictional cooling
of charged particle beams [76,77], whenever an ion beam is
injected into a denser electron plasma, Coulomb collisions
with the background electrons have the effect of decelerating
the beam particles along the initial direction of propagation
(a phenomena referred to in stellar dynamics as dynamical
friction [78]). Moreover, in tokamak (generally collisionless)
plasmas, whenever a hot region is connected to the colder
wall, a strong temperature gradient appears. In this case, the
properties of the plasma and therefore its collisionality vary
strongly along the temperature gradient affecting the plasma’s
transport properties [40]. On the side of gravitational systems,
the dynamics in galaxy cores around massive central black
holes is dominated by two-body encounters with low impact

parameter [41,79], while in the rest of the galaxy the dynamics
is collisionless over times of the order of the age of the
Universe. In all these cases, a consistent numerical treatment
is needed.

As a natural follow-up to this work we are going to simulate
similar gas dynamics in the presence of a self-consistent
electrostatic potential for systems with different species of
particles—a problem of primary interest for transport phenom-
ena in plasmas. Furthermore, we are planning to introduce heat
and particle reservoirs in the MPC scheme to tackle problems
of realistic conduction in gases of neutral and charged particles.
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[58] Z. Donkó, Phys. Plasmas 21, 043504 (2014).
[59] E. Vasiliev, MNRAS 446, 3150 (2015).
[60] A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
[61] A. Malevanets and R. Kapral, in Novel Methods

in Soft Matter Simulations, Vol. 640, edited by
M. Karttunen, A. Lukkarinen, and I. Vattulainen (Springer
Verlag, Berlin, 2004), pp. 116–149.

[62] G. Gompper, T. Ihle, D. M. Kroll, and R. G. Winkler,
Multi-Particle Collision Dynamics: A Particle-Based Mesoscale

Simulation Approach to the Hydrodynamics of Complex Fluids
(Springer Verlag, Berlin/Heidelberg, 2009), p. 1.

[63] R. Kapral, Multiparticle Collision Dynamics: Simulation of
Complex Systems on Mesoscales (John Wiley and Sons Inc.,
Hoboken, NJ, 2008), pp. 89–146.

[64] Here the velocity exchange is an instantaneous process that is
not mediated by an effective potential, therefore we impose the
conservation of the kinetic energy solely.

[65] L. Delfini, Ph.D. thesis, University of Florence (Italy)
(2008).

[66] L. Spitzer, Physics of Fully Ionized Gases (Wiley Interscience,
New York, 1965).

[67] L. Ciotti, in Plasmas in the Laboratory and the Universe:
Interactions, Patterns, and Turbulence, edited by G. Bertin, F.
de Luca, G. Lodato, R. Pozzoli, and M. Romé, AIP Conf. Proc.
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