36 research outputs found

    Observation of the Peach Fruit Moth, Carposina sasakii, Larvae in Young Apple Fruit by Dedicated Micro-Magnetic Resonance Imaging

    Get PDF
    Infestation of young apple fruits by the larvae of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), was studied by a small dedicated micro-magnetic resonance imaging (MRI) apparatus using the three-dimensional (3D) gradient-echo method and the two-dimensional (2D) and 3D spin-echo methods. Changes from a young larva at 1.8 mm in length to a mature one ready to leave the fruit were observed in relation to the progression of infestation of the fruit tissues. The trace of larva intrusion was demonstrated by a series of sliced images in the 3D image data of an infested fruit, where it entered from outside the calyx, and migrated to near the vasculature around the carpel through the core. The small, dedicated MRI device was proven useful for ecological studies of the growth and movement of insect larvae in their food fruits. It can also be applied to detect the infestation of small fruits by insect larvae

    Successful treatment of COVID‐19‐related acute respiratory distress syndrome with a rare blood type: A case report

    Get PDF
    Extracorporeal membrane oxygenation is indispensable for critically severe COVID-19 patients. However, it would be inapplicable to patients with a rare blood type or blood transfusion refusal. In that case, severely conservative fluid management with the sacrifice of renal functions and hydrocortisone therapy should be considered for better oxygenation

    Safety of Silk-elastin Sponges in Patients with Chronic Skin Ulcers: A Phase I/II, Single-center, Open-label, Single-arm Clinical Trial

    Get PDF
    Background: Although traditional wound dressings such as collagen scaffolds promote granulation tissue formation, the efficacy of these dressings in chronic wounds is limited because of high susceptibility to bacterial growth. Biomaterials that can be applied to chronic wounds should have an anti-bacterial function. We previously reported that administering a silk-elastin solution that forms moisturizing hydrogels to wound surfaces of diabetic mice reduced bacterial growth and promoted granulation tissue formation compared with control or carboxymethyl cellulose hydrogels. We hypothesized that silk-elastin promotes wound healing in human chronic wounds by suppressing bacterial growth. Methods: An open-label, clinical case series was conducted with a prospective, single-arm design at Kyoto University Hospital in Kyoto, Japan. In this study, 6 patients with chronic skin ulcers of any origin (2 < ulcer area (cm2) < 25) on their lower extremities were included; patients with critical ischemia were excluded. Silk-elastin sponges were applied and covered with a polyurethane film without changing the dressing for 14 days. Inflammation triggered treatment discontinuation due to fear of infection. The primary study endpoint was adverse events, including inflammation and infection. Results: Poor hydrogel formation, possibly due to continuous exudation, was observed. No serious adverse events were noted. Two patients discontinued treatment on day 6 and day 7, respectively, due to inflammation, but they were not infected. The other 4 patients completed the 14-day silk-elastin sponge treatment without infection. Conclusion: Silk-elastin sponge is safe for chronic skin ulcers, and its ability to promote wound healing should be determined by confirmatory clinical trials

    Rapid Detection of Infestation of Apple Fruits by the Peach Fruit Moth, Carposina sasakii Matsumura, Larvae Using a 0.2-T Dedicated Magnetic Resonance Imaging Apparatus

    Get PDF
    Infestation of harvested apple fruits by the peach fruit moth (Carposina sasakii Matsumura) was studied using a dedicated magnetic resonance imaging (MRI) apparatus equipped with a 0.2-T permanent magnet. Infested holes on the three-dimensional (3-D) images tracked ecological movements of peach fruit moth larvae within the food fruits, and thus in their natural habitat. Sensitive short solenoid coil and surface coil detectors were devised to shorten measurement times. The short solenoid coil detected infestation holes at a rate of 6.4 s per image by the single-slice 2-D measurement. The multi-slice 2-D measurement provided six slice images of a fruit within 2 min taken by the two detectors. These results indicate that the 0.2-T MRI apparatus allows one to distinguish sound fruits from infested ones, and also as a means for plant protection and the preservation of natural ecological systems in foreign trade

    Direct evidence for pitavastatin induced chromatin structure change in the KLF4 gene in endothelial cells.

    Get PDF
    Statins exert atheroprotective effects through the induction of specific transcriptional factors in multiple organs. In endothelial cells, statin-dependent atheroprotective gene up-regulation is mediated by Kruppel-like factor (KLF) family transcription factors. To dissect the mechanism of gene regulation, we sought to determine molecular targets by performing microarray analyses of human umbilical vein endothelial cells (HUVECs) treated with pitavastatin, and KLF4 was determined to be the most highly induced gene. In addition, it was revealed that the atheroprotective genes induced with pitavastatin, such as nitric oxide synthase 3 (NOS3) and thrombomodulin (THBD), were suppressed by KLF4 knockdown. Myocyte enhancer factor-2 (MEF2) family activation is reported to be involved in pitavastatin-dependent KLF4 induction. We focused on MEF2C among the MEF2 family members and identified a novel functional MEF2C binding site 148 kb upstream of the KLF4 gene by chromatin immunoprecipitation along with deep sequencing (ChIP-seq) followed by luciferase assay. By applying whole genome and quantitative chromatin conformation analysis {chromatin interaction analysis with paired end tag sequencing (ChIA-PET), and real time chromosome conformation capture (3C) assay}, we observed that the MEF2C-bound enhancer and transcription start site (TSS) of KLF4 came into closer spatial proximity by pitavastatin treatment. 3D-Fluorescence in situ hybridization (FISH) imaging supported the conformational change in individual cells. Taken together, dynamic chromatin conformation change was shown to mediate pitavastatin-responsive gene induction in endothelial cells
    corecore