11 research outputs found

    Approximate Analytical Solutions to the Initial Data Problem of Black Hole Binary Systems

    Full text link
    We present approximate analytical solutions to the Hamiltonian and momentum constraint equations, corresponding to systems composed of two black holes with arbitrary linear and angular momentum. The analytical nature of these initial data solutions makes them easier to implement in numerical evolutions than the traditional numerical approach of solving the elliptic equations derived from the Einstein constraints. Although in general the problem of setting up initial conditions for black hole binary simulations is complicated by the presence of singularities, we show that the methods presented in this work provide initial data with l1l_1 and l∞l_\infty norms of violation of the constraint equations falling below those of the truncation error (residual error due to discretization) present in finite difference codes for the range of grid resolutions currently used. Thus, these data sets are suitable for use in evolution codes. Detailed results are presented for the case of a head-on collision of two equal-mass M black holes with specific angular momentum 0.5M at an initial separation of 10M. A straightforward superposition method yields data adequate for resolutions of h=M/4h=M/4, and an "attenuated" superposition yields data usable to resolutions at least as fine as h=M/8h=M/8. In addition, the attenuated approximate data may be more tractable in a full (computational) exact solution to the initial value problem.Comment: 6 pages, 5 postscript figures. Minor changes and some points clarified. Accepted for publication in Phys. Rev.

    Locating Boosted Kerr and Schwarzschild Apparent Horizons

    Full text link
    We describe a finite-difference method for locating apparent horizons and illustrate its capabilities on boosted Kerr and Schwarzschild black holes. Our model spacetime is given by the Kerr-Schild metric. We apply a Lorentz boost to this spacetime metric and then carry out a 3+1 decomposition. The result is a slicing of Kerr/Schwarzschild in which the black hole is propagated and Lorentz contracted. We show that our method can locate distorted apparent horizons efficiently and accurately.Comment: Submitted to Physical Review D. 12 pages and 22 figure

    Extended Lifetime in Computational Evolution of Isolated Black Holes

    Full text link
    Solving the 4-d Einstein equations as evolution in time requires solving equations of two types: the four elliptic initial data (constraint) equations, followed by the six second order evolution equations. Analytically the constraint equations remain solved under the action of the evolution, and one approach is to simply monitor them ({\it unconstrained} evolution). The problem of the 3-d computational simulation of even a single isolated vacuum black hole has proven to be remarkably difficult. Recently, we have become aware of two publications that describe very long term evolution, at least for single isolated black holes. An essential feature in each of these results is {\it constraint subtraction}. Additionally, each of these approaches is based on what we call "modern," hyperbolic formulations of the Einstein equations. It is generally assumed, based on computational experience, that the use of such modern formulations is essential for long-term black hole stability. We report here on comparable lifetime results based on the much simpler ("traditional") gË™\dot g - KË™\dot K formulation. We have also carried out a series of {\it constrained} 3-d evolutions of single isolated black holes. We find that constraint solution can produce substantially stabilized long-term single hole evolutions. However, we have found that for large domains, neither constraint-subtracted nor constrained gË™\dot g - KË™\dot K evolutions carried out in Cartesian coordinates admit arbitrarily long-lived simulations. The failure appears to arise from features at the inner excision boundary; the behavior does generally improve with resolution.Comment: 20 pages, 6 figure

    Analysis of ``Gauge Modes'' in Linearized Relativity

    Get PDF
    By writing the complete set of 3+13 + 1 (ADM) equations for linearized waves, we are able to demonstrate the properties of the initial data and of the evolution of a wave problem set by Alcubierre and Schutz. We show that the gauge modes and constraint error modes arise in a straightforward way in the analysis, and are of a form which will be controlled in any well specified convergent computational discretization of the differential equations.Comment: 11pages LaTe

    Initial Data and Coordinates for Multiple Black Hole Systems

    Get PDF
    We present here an alternative approach to data setting for spacetimes with multiple moving black holes generalizing the Kerr-Schild form for rotating or non-rotating single black holes to multiple moving holes. Because this scheme preserves the Kerr-Schild form near the holes, it selects out the behaviour of null rays near the holes, may simplify horizon tracking, and may prove useful in computational applications. For computational evolution, a discussion of coordinates (lapse function and shift vector) is given which preserves some of the properties of the single-hole Kerr-Schild form

    Generic Tracking of Multiple Apparent Horizons with Level Flow

    Get PDF
    We report the development of the first apparent horizon locator capable of finding multiple apparent horizons in a ``generic'' numerical black hole spacetime. We use a level-flow method which, starting from a single arbitrary initial trial surface, can undergo topology changes as it flows towards disjoint apparent horizons if they are present. The level flow method has two advantages: 1) The solution is independent of changes in the initial guess and 2) The solution can have multiple components. We illustrate our method of locating apparent horizons by tracking horizon components in a short Kerr-Schild binary black hole grazing collision.Comment: 13 pages including figures, submitted to Phys Rev

    Three-dimensional adaptive evolution of gravitational waves in numerical relativity

    Get PDF
    Adaptive techniques are crucial for successful numerical modeling of gravitational waves from astrophysical sources such as coalescing compact binaries, since the radiation typically has wavelengths much larger than the scale of the sources. We have carried out an important step toward this goal, the evolution of weak gravitational waves using adaptive mesh refinement in the Einstein equations. The 2-level adaptive simulation is compared with unigrid runs at coarse and fine resolution, and is shown to track closely the features of the fine grid run.Comment: REVTeX, 7 pages, including three figures; submitted to Physical Review

    Grazing Collisions of Black Holes via the Excision of Singularities

    Get PDF
    We present the first simulations of non-headon (grazing) collisions of binary black holes in which the black hole singularities have been excised from the computational domain. Initially two equal mass black holes mm are separated a distance ≈10m\approx10m and with impact parameter ≈2m\approx2m. Initial data are based on superposed, boosted (velocity ≈0.5c\approx0.5c) solutions of single black holes in Kerr-Schild coordinates. Both rotating and non-rotating black holes are considered. The excised regions containing the singularities are specified by following the dynamics of apparent horizons. Evolutions of up to t≈35mt \approx 35m are obtained in which two initially separate apparent horizons are present for t≈3.8mt\approx3.8m. At that time a single enveloping apparent horizon forms, indicating that the holes have merged. Apparent horizon area estimates suggest gravitational radiation of about 2.6% of the total mass. The evolutions end after a moderate amount of time because of instabilities.Comment: 2 References corrected, reference to figure update

    Approximate analytical solutions to the initial data problem of black hole binary systems

    No full text
    We present approximate analytical solutions to the Hamiltonian and momentum constraint equations, corresponding to systems composed of two black holes with arbitrary linear and angular momentum. The analytical nature of these initial data solutions makes them easier to implement in numerical evolutions than the traditional numerical approach of solving the elliptic equations derived from the Einstein constraints. Although in general the problem of setting up initial conditions for black hole binary simulations is complicated by the presence of singularities, we show that the methods presented in this work provide initial data with l 1 and l ϱ norms of violation of the constraint equations falling below those of the truncation error ͑residual error due to discretization͒ present in finite difference codes for the range of grid resolutions currently used. Thus, these data sets are suitable for use in evolution codes. Detailed results are presented for the case of a head-on collision of two equal-mass M black holes with specific angular momentum 0.5M at an initial separation of 10M . A straightforward superposition method yields data adequate for resolutions of hϭM /4, and an ''attenuated'' superposition yields data usable to resolutions at least as fine as hϭM /8. In addition, the attenuated approximate data may be more tractable in a full ͑computational͒ exact solution to the initial value problem
    corecore