21 research outputs found

    The shape of Fe Kα\alpha line emitted from relativistic accretion disc around AGN black holes

    Full text link
    The relativistically broadened Fe Kα\alpha line, originating from the accretion disc in a vicinity of a super massive black hole, is observed in only less than 50\% of type 1 Active Galactic Nuclei (AGN). In this study we investigate could this lack of detections be explained by the effects of certain parameters of the accretion disc and black hole, such as the inclination, the inner and outer radius of disc and emissivity index. In order to determine how these parameters affect the Fe K α\alpha line shape, we simulated about 60,000 Fe K α\alpha line profiles emitted from the relativistic disc. Based on simulated line profiles, we conclude that the lack of the Fe Kα\alpha line detection in type 1 AGN could, be caused by the specific emitting disc parameters, but also by the limits in the spectral resolution and sensitivity of the X-ray detectors.Comment: Based on the talk presented Balkan Workshop BW2018 (10-14 June 2018, Ni\v{s}, Serbia), accepted for publishing in International Journal of Modern Physics A, 8 figures, 1 table, 15 page

    The influence of accretion geometry on the spectral evolution during thermonuclear (type-I) X-ray bursts

    Get PDF
    Neutron star (NS) masses and radii can be estimated from observations of photospheric radius-expansion X-ray bursts, provided the chemical composition of the photosphere, the spectral colour-correction factors in the observed luminosity range, and the emission area during the bursts are known. By analysing 246 X-ray bursts observed by the Rossi X-ray Timing Explorer from 11 low-mass X-ray binaries, we find a dependence between the persistent spectral properties and the time evolution of the black body normalisation during the bursts. All NS atmosphere models predict that the colour-correction factor decreases in the early cooling phase when the luminosity first drops below the limiting Eddington value, leading to a characteristic pattern of variability in the measured blackbody normalisation. However, the model predictions agree with the observations for most bursts occurring in hard, low-luminosity, &#39;island&#39; spectral states, but rarely during soft, high-luminosity, &#39;banana&#39; states. The observed behaviour may be attributed to the accretion flow, which influences cooling of the NS preferentially during the soft state bursts. This result implies that only the bursts occurring in the hard, low-luminosity spectral states can be reliably used for NS mass and radius determination.</p

    LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures

    Get PDF
    This paper describes the rapidly evolving and unusual supernova LSQ13ddu, discovered by the La Silla-QUEST survey. LSQ13ddu displayed a rapid rise of just 4.8 ± 0.9 d to reach a peak brightness of −19.70 ± 0.02 mag in the LSQgr band. Early spectra of LSQ13ddu showed the presence of weak and narrow HeI features arising from interaction with circumstellar material (CSM). These interaction signatures weakened quickly, with broad features consistent with those seen in stripped-envelope SNe becoming dominant around two weeks after maximum. The narrow HeI velocities are consistent with the wind velocities of luminous blue variables but its spectra lack the typically seen hydrogen features. The fast and bright early light curve is inconsistent with radioactive ⁵⁶Ni powering but can be explained through a combination of CSM interaction and an underlying ⁵⁶Ni decay component that dominates the later time behaviour of LSQ13ddu. Based on the strength of the underlying broad features, LSQ13ddu appears deficient in He compared to standard SNe Ib

    The mystery of photometric twins DES17X1boj and DES16E2bjy

    Get PDF
    We present an analysis of DES17X1boj and DES16E2bjy, two peculiar transients discovered by the Dark Energy Survey (DES). They exhibit nearly identical double-peaked light curves that reach very different maximum luminosities (Mr = −15.4 and −17.9, respectively). The light-curve evolution of these events is highly atypical and has not been reported before. The transients are found in different host environments: DES17X1boj was found near the nucleus of a spiral galaxy, while DES16E2bjy is located in the outskirts of a passive red galaxy. Early photometric data are well fitted with a blackbody and the resulting moderate photospheric expansion velocities (1800  km s−1 for DES17X1boj and 4800  km s−1 for DES16E2bjy) suggest an explosive or eruptive origin. Additionally, a feature identified as high-velocity Ca II absorption (⁠v ≈ 9400 km s−1) in the near-peak spectrum of DES17X1boj may imply that it is a supernova. While similar light-curve evolution suggests a similar physical origin for these two transients, we are not able to identify or characterize the progenitors

    The host galaxies of 106 rapidly evolving transients discovered by the Dark Energy Survey

    Get PDF
    Rapidly evolving transients (RETs), also termed fast blue optical transients, are a recently discovered group of astrophysical events that display rapid luminosity evolution. RETs typically rise to peak in less than 10 d and fade within 30, a time-scale unlikely to be compatible with the decay of Nickel-56 that drives conventional supernovae (SNe). Their peak luminosity spans a range of −15 < Mg < −22.5, with some events observed at redshifts greater than 1. Their evolution on fast time-scales has hindered high-quality follow-up observations, and thus their origin and explosion/emission mechanism remains unexplained. In this paper, we present the largest sample of RETs to date, comprising 106 objects discovered by the Dark Energy Survey, and perform the most comprehensive analysis of RET host galaxies. Using deep-stacked photometry and emission lines from OzDES spectroscopy, we derive stellar masses and star formation rates (SFRs) for 49 host galaxies, and metallicities ([O/H]) for 37. We find that RETs explode exclusively in star-forming galaxies and are thus likely associated with massive stars. Comparing RET hosts to samples of host galaxies of other explosive transients as well as field galaxies, we find that RETs prefer galaxies with high specific SFRs (〈log (sSFR)〉 ∼ −9.6), indicating a link to young stellar populations, similar to stripped-envelope SNe. RET hosts appear to show a lack of chemical enrichment, their metallicities akin to long-duration gamma-ray bursts and superluminous SN host galaxies (〈12 + log (O/H)〉 ∼ 9.4). There are no clear relationships between mass or SFR of the host galaxies and the peak magnitudes or decline rates of the transients themselves.We acknowledge support from STFC grant ST/R000506/1. MSm, MSu, and CPG acknowledge support from from the European Union’s 7th Framework Programme (EU/FP7) European Research Council (ERC) grant no. 615929. LG was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839090. This work has been partially supported by the Spanish grant PGC2018- 095317-B-C21 within the European Funds for Regional Development (FEDER). LK was supported by the Science and Technology Facilities Council (grant number ST/P006760/1) through the DISCnet Centre for Doctoral Training

    Rapidly evolving transients in the Dark Energy Survey

    Get PDF
    We present the results of a search for rapidly evolving transients in the Dark Energy Survey Supernova Programme. These events are characterized by fast light-curve evolution (rise to peak in≲10 d and exponential decline in≲30 d after peak).We discovered 72 events, including 37 transients with a spectroscopic redshift from host galaxy spectral features. The 37 events increase the total number of rapid optical transients by more than a factor of two. They are found at a wide range of redshifts (0.05 Mg > -22.25). The multiband photometry is well fit by a blackbody up to few weeks after peak. The events appear to be hot (T ≈ 10 000-30 000 K) and large (R ≈ 1014 - 2 × 1015 cm) at peak, and generally expand and cool in time, though some events show evidence for a receding photosphere with roughly constant temperature. Spectra taken around peak are dominated by a blue featureless continuum consistent with hot, optically thick ejecta. We compare our events with a previously suggested physical scenario involving shock breakout in an optically thick wind surrounding a core-collapse supernova, we conclude that current models for such a scenario might need an additional power source to describe the exponential decline. We find that these transients tend to favour star-forming host galaxies, which could be consistent with a core-collapse origin. However, more detailed modelling of the light curves is necessary to determine their physical origin

    SN 2020udy: a SN Iax with strict limits on interaction consistent with a helium-star companion

    Full text link
    Early observations of transient explosions can provide vital clues to their progenitor origins. In this paper we present the nearby Type Iax (02cx-like) supernova (SN), SN 2020udy that was discovered within hours (\sim7 hr) of estimated first light. An extensive dataset of ultra-violet, optical, and near-infrared observations was obtained, covering out to \sim150 d after explosion. SN 2020udy peaked at -17.86±\pm0.43 mag in the r band and evolved similarly to other 'luminous' SNe Iax, such as SNe 2005hk and 2012Z. Its well-sampled early light curve allows strict limits on companion interaction to be placed. Main-sequence companion stars with masses of 2 and 6 M_\odot are ruled out at all viewing angles, while a helium-star companion is allowed from a narrow range of angles (140-180^\circ away from the companion). The spectra and light curves of SN2020udy are in good agreement with those of the 'N5def' deflagration model of a near Chandrasekhar-mass carbon-oxygen white dwarf. However, as has been seen in previous studies of similar luminosity events, SN 2020udy evolves slower than the model. Broad-band linear polarisation measurements taken at and after peak are consistent with no polarisation, in agreement with the predictions of the companion-star configuration from the early light curve measurements. The host galaxy environment is low metallicity and is consistent with a young stellar population. Overall, we find the most plausible explosion scenario to be the incomplete disruption of a CO white dwarf near the Chandrasekhar-mass limit, with a helium-star companion.Comment: 18 pages, 14 figures, submitted to MNRA

    LSQ13ddu: a rapidly evolving stripped-envelope supernova with early circumstellar interaction signatures

    Get PDF
    This paper describes the rapidly evolving and unusual supernova LSQ13ddu, discovered by the La Silla-QUEST survey. LSQ13ddu displayed a rapid rise of just 4.8 +/- 0.9 d to reach a peak brightness of -19.70 +/- 0.02 mag in the LSQgr band. Early spectra of LSQ13ddu showed the presence of weak and narrow He I features arising from interaction with circumstellar material (CSM). These interaction signatures weakened quickly, with broad features consistent with those seen in stripped-envelope SNe becoming dominant around two weeks after maximum. The narrow He I velocities are consistent with the wind velocities of luminous blue variables but its spectra lack the typically seen hydrogen features. The fast and bright early light curve is inconsistent with radioactive Ni-56 powering but can be explained through a combination of CSM interaction and an underlying Ni-56 decay component that dominates the later time behaviour of LSQ13ddu. Based on the strength of the underlying broad features, LSQ13ddu appears deficient in He compared to standard SNe Ib
    corecore