15 research outputs found

    Quasi-elastic polarization-transfer measurements on the deuteron in anti-parallel kinematics

    Full text link
    We present measurements of the polarization-transfer components in the 2^2H(e,ep)(\vec e,e'\vec p) reaction, covering a previously unexplored kinematic region with large positive (anti-parallel) missing momentum, pmissp_{\rm miss}, up to 220 MeV/c/c, and Q2=0.65Q^2=0.65 (GeV/c)2({\rm GeV}/c)^2. These measurements, performed at the Mainz Microtron (MAMI), were motivated by theoretical calculations which predict small final-state interaction (FSI) effects in these kinematics, making them favorable for searching for medium modifications of bound nucleons in nuclei. We find in this kinematic region that the measured polarization-transfer components PxP_x and PzP_z and their ratio agree with the theoretical calculations, which use free-proton form factors. Using this, we establish upper limits on possible medium effects that modify the bound proton's form factor ratio GE/GMG_E/G_M at the level of a few percent. We also compare the measured polarization-transfer components and their ratio for 2^2H to those of a free (moving) proton. We find that the universal behavior of 2^2H, 4^4He and 12^{12}C in the double ratio (Px/Pz)A(Px/Pz)1H\frac{(P_x/P_z)^A}{(P_x/P_z)^{^1\rm H}} is maintained in the positive missing-momentum region

    ISR Experiment at A1-Collaboration

    Get PDF
    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics. In a pursuit of reconciling the puzzle an experiment is underway at MAMI, which exploits the radiative tail of the elastic peak to study the properties of electromagnetic processes and to extract the proton charge form factor (GEp) \left( {\mathop G\nolimits_E^p } \right) at extremely small Q2. This paper reports on the latest results of the first such measurement performed at the three-spectrometer facility of the A1-Collaboration, which led to a precise validation of radiative corrections far away from elastic line and provided measurements of GEp \mathop G\nolimits_E^p for 0.001 ≤ Q2 ≤ 0.017 (GeV/c)2

    Non-forward radiative corrections to electron-carbon scattering

    Full text link
    Radiative corrections to elastic scattering represent an important part of the interpretation of electron-induced nuclear reactions at small energy transfers, where they represent a dominant part of the background. Here we present and validate a new event generator for simulating QED radiative processes in electron-carbon scattering that exactly calculates the coherent sum of the Bethe-Heitler amplitudes for the leading diagrams. We demonstrate that the generator describes the shape of the radiative tail of an elastic peak with a precision better than 10% over the whole energy range of the scattered electrons and can thus be reliably employed in the analyses of electron scattering experiments for more precise extraction of inelastic cross-sections

    Puzzling out the proton radius puzzle

    No full text
    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described

    Puzzling out the proton radius puzzle

    No full text
    The discrepancy between the proton charge radius extracted from the muonic hydrogen Lamb shift measurement and the best present value obtained from the elastic scattering experiments, remains unexplained and represents a burning problem of today’s nuclear physics: after more than 50 years of research the radius of a basic constituent of matter is still not understood. This paper presents a summary of the best existing proton radius measurements, followed by an overview of the possible explanations for the observed inconsistency between the hydrogen and the muonic-hydrogen data. In the last part the upcoming experiments, dedicated to remeasuring the proton radius, are described
    corecore