6 research outputs found

    Structure–activity relationships for the G-quadruplex-targeting experimental drug QN-302 and two analogues probed with comparative transcriptome profiling and molecular modeling

    Get PDF
    The tetrasubstituted naphthalene diimide compound QN-302 binds to G-quadruplex (G4) DNA structures. It shows high potency in pancreatic ductal adenocarcinoma (PDAC) cells and inhibits the transcription of cancer-related genes in these cells and in PDAC animal models. It is currently in Phase 1a clinical evaluation as an anticancer drug. A study of structure–activity relationships of QN-302 and two related analogues (CM03 and SOP1247) is reported here. These have been probed using comparisons of transcriptional profiles from whole-genome RNA-seq analyses, together with molecular modelling and molecular dynamics simulations. Compounds CM03 and SOP1247 differ by the presence of a methoxy substituent in the latter: these two compounds have closely similar transcriptional profiles. Whereas QN-302 (with an additional benzyl-pyrrolidine group), although also showing down-regulatory effects in the same cancer-related pathways, has effects on distinct genes, for example in the hedgehog pathway. This distinctive pattern of genes affected by QN-302 is hypothesized to contribute to its superior potency compared to CM03 and SOP1247. Its enhanced ability to stabilize G4 structures has been attributed to its benzyl-pyrrolidine substituent fitting into and filling most of the space in a G4 groove compared to the hydrogen atom in CM03 or the methoxy group substituent in SOP1247

    In vitro and in vivo antifungal profile of a novel and long acting inhaled azole, PC945, on Aspergillus fumigatus infection

    Get PDF
    The profile of PC945, a novel triazole antifungal, designed for administration via inhalation, hasbeen assessed in a range of in vitro and in vivo studies. PC945 was characterized as a potent, tight-binding inhibitor of Aspergillus fumigatus sterol 14α-demethylase (CYP51A and CYP51B)activity.In addition, when A. fumigatus hyphae or human bronchial cells were treated with PC945, and thenwashed, PC945 was found to be quickly absorbed into both target and non-target cells and toproduce persistent antifungal effects. In temporarily neutropenic immunocompromised miceinfected with A. fumigatus intranasally, 50% of the animals survived until day 7 when treatedintranasally with PC945 at 0.56 μg/mouse, while posaconazole showed similar effects (44%) at14 μg/mouse. This profile affirms that topical treatment with PC945 should provide potentantifungal activity in the lung

    CZ415, a Highly Selective mTOR Inhibitor Showing in Vivo Efficacy in a Collagen Induced Arthritis Model

    No full text
    [Image: see text] CZ415, a potent ATP-competitive mTOR inhibitor with unprecedented selectivity over any other kinase is described. In addition to a comprehensive characterization of its activities in vitro, in vitro ADME, and in vivo pharmacokinetic data are reported. The suitability of this inhibitor for studying in vivo mTOR biology is demonstrated in a mechanistic mouse model monitoring mTOR proximal downstream phosphorylation signaling. Furthermore, the compound reported here is the first ATP-competitive mTOR inhibitor described to show efficacy in a semitherapeutic collagen induced arthritis (CIA) mouse model

    Asymmetrically Substituted Quadruplex-Binding Naphthalene Diimide Showing Potent Activity in Pancreatic Cancer Models

    No full text
    [Image: see text] Targeting of genomic quadruplexes is an approach to treating complex human cancers. We describe a series of tetra-substituted naphthalene diimide (ND) derivatives with a phenyl substituent directly attached to the ND core. The lead compound (SOP1812) has 10 times superior cellular and in vivo activity compared with previous ND compounds and nanomolar binding to human quadruplexes. The pharmacological properties of SOP1812 indicate good bioavailability, which is consistent with the in vivo activity in xenograft and genetic models for pancreatic cancer. Transcriptome analysis shows that it down-regulates several cancer gene pathways, including Wnt/β-catenin signaling

    Asymmetrically substituted quadruplex-binding naphthalene diimide showing potent activity in pancreatic cancer models

    No full text
    Targeting of genomic quadruplexes is an approach to treating complex human cancers. We describe a series of tetra-substituted naphthalene diimide (ND) derivatives with a phenyl substituent directly attached to the ND core. The lead compound (SOP1812) has 10 times superior cellular and in vivo activity compared with previous ND compounds and nanomolar binding to human quadruplexes. The pharmacological properties of SOP1812 indicate good bioavailability, which is consistent with the in vivo activity in xenograft and genetic models for pancreatic cancer. Transcriptome analysis shows that it down-regulates several cancer gene pathways, including Wnt/β-catenin signaling

    CZ415, a Highly Selective mTOR Inhibitor Showing <i>in Vivo</i> Efficacy in a Collagen Induced Arthritis Model

    No full text
    <b>CZ415</b>, a potent ATP-competitive mTOR inhibitor with unprecedented selectivity over any other kinase is described. In addition to a comprehensive characterization of its activities <i>in vitro</i>, <i>in vitro</i> ADME, and <i>in vivo</i> pharmacokinetic data are reported. The suitability of this inhibitor for studying <i>in vivo</i> mTOR biology is demonstrated in a mechanistic mouse model monitoring mTOR proximal downstream phosphorylation signaling. Furthermore, the compound reported here is the first ATP-competitive mTOR inhibitor described to show efficacy in a semitherapeutic collagen induced arthritis (CIA) mouse model
    corecore