51 research outputs found

    East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin

    Get PDF
    Background: Rhipicephalus sanguineus belongs to a complex of hard tick species with high veterinary-medical significance. Recently, new phylogenetic units have been discovered within R. sanguineus, which therefore needs taxonomic revision. The present study was initiated to provide new information on the phylogeography of relevant haplotypes from less studied regions of Europe and Africa. With this aim, molecular-phylogenetic analyses of two mitochondrial markers were performed on 50 ticks collected in Hungary, the Balkans, countries along the Mediterranean Sea, Kenya and Ivory Coast. Results: In the "temperate lineage" of R. sanguineus, based on cytochrome c oxidase subunit 1 (cox1) and 16S rRNA genes, Rhipicephalus sp. I was only found in the eastern part of the Mediterranean Basin (with relatively homogenous haplotypes), whereas Rhipicephalus sp. II occurred in the middle-to-western part of this region (with phylogenetically dichotomous haplotypes). Ticks identified as R. leporis (based on morphology and cox1 gene) were found in Kenya and Ivory Coast. These clustered phylogenetically within R. sanguineus (s.l.) ("tropical lineage"). Conclusions: In the Mediterranean Basin two mitochondrial lineages of R. sanguineus, i. e. Rhipicephalus sp. I and Rhipicephalus sp. II exist, which show different geographical distribution. Therefore, data from this study confirm limited gene flow between Rhipicephalus sp. I and Rhipicephalus sp. II, but more evidence (analyses of nuclear markers, extensive morphological and biological comparison etc.) are necessary to infer if they belong to different species or not. The phylogenetic relationships of eastern and western African ticks, which align with R. leporis, need to be studied further within R. sanguineus (s.l.) ("tropical lineage")

    Coendangered hard-ticks: threatened or threatening?

    Get PDF
    The overwhelming majority of animal conservation projects are focused on vertebrates, despite most of the species on Earth being invertebrates. Estimates state that about half of all named species of invertebrates are parasitic in at least one stage of their development. The dilemma of viewing parasites as biodiversity or pest has been discussed by several authors. However, ticks were omitted. The latest taxonomic synopses of non-fossil Ixodidae consider valid 700 species. Though, how many of them are still extant is almost impossible to tell, as many of them are known only from type specimens in museums and were never collected since their original description. Moreover, many hosts are endangered and as part of conservation efforts of threatened vertebrates, a common practice is the removal of, and treatment for external parasites, with devastating impact on tick populations. There are several known cases when the host became extinct with subsequent coextinction of their ectoparasites. For our synoptic approach we have used the IUCN status of the host in order to evaluate the status of specifically associated hard-ticks. As a result, we propose a number of 63 coendangered and one extinct hard-tick species. On the other side of the coin, the most important issue regarding tick-host associations is vectorial transmission of microbial pathogens (i.e. viruses, bacteria, protozoans). Tick-borne diseases of threatened vertebrates are sometimes fatal to their hosts. Mortality associated with pathogens acquired from ticks has been documented in several cases, mostly after translocations. Are ticks a real threat to their coendangered host and should they be eliminated? Up to date, there are no reliable proofs that ticks listed by us as coendangered are competent vectors for pathogens of endangered animals

    Lungworms and gastrointestinal parasites of domestic cats: a European perspective

    Get PDF
    With the exception of Aelurostrongylus abstrusus, feline lungworms have been poorly studied. Information on their distribution is patchy and mostly limited to case reports. In this study, the occurrence of feline lungworms and co-infecting gastrointestinal parasites has been investigated in 12 European countries (i.e. Austria, Belgium, Bulgaria, France, Greece, Hungary, Italy, Portugal, Romania, Spain, Switzerland and the United Kingdom). An average of 10 domestic cats, with regular outdoor access, was sampled each month for 12 months, and freshly passed faeces were collected. Stools were processed using a McMaster assay and a quantitative Baermann-Wetzel method. Animals positive for lungworms and/or gastrointestinal parasites were treated with a formulation containing fipronil, (S)-methoprene, eprinomectin, and praziquantel (Broadline®, Merial), and re-sampled 28 days post-treatment. The association between lungworm infection and risk factors was analysed using statistical medians/means and the efficacy of the treatment against each lungworm species was assessed. Of 1990 cats sampled, 613 (30.8%) were positive for at least one parasite, while 210 (10.6%) were infected by lungworms. The prevalence of lungworm infection varied between the sampled sites, with the highest recorded in Bulgaria (35.8%) and the lowest in Switzerland (0.8%). None of the cats from Austria or the United Kingdom were infected by lungworms. Aelurostrongylus abstrusus was the species most frequently detected (78.1%), followed by Troglostrongylus brevior (19.5%), Eucoleus aerophilus (14.8%) and Oslerus rostratus (3.8%). The overall efficacy of the treatment was 99% for A. abstrusus and 100% for T. brevior, O. rostratus and E. aerophilus. Data presented provide a comprehensive account of the diagnosis, epidemiology and treatment of feline lungworms in Europe, as well as of the occurrence of co-infections by gastrointestinal parasites.This work was funded by Merial SAS (Europe)

    A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe

    Get PDF
    Anaplasma phagocytophilum is the agent of tick-borne fever, equine, canine and human granulocytic anaplasmosis. The common route of A. phagocytophilum transmission is through a tick bite, the main vector in Europe being Ixodes ricinus. Despite the apparently ubiquitous presence of the pathogen A. phagocytophilum in ticks and various wild and domestic animals from Europe, up to date published clinical cases of human granulocytic anaplasmosis (HGA) remain rare compared to the worldwide status. It is unclear if this reflects the epidemiological dynamics of the human infection in Europe or if the disease is underdiagnosed or underreported. Epidemiologic studies in Europe have suggested an increased occupational risk of infection for forestry workers, hunters, veterinarians, and farmers with a tick-bite history and living in endemic areas. Although the overall genetic diversity of A. phagocytophilum in Europe is higher than in the USA, the strains responsible for the human infections are related on both continents. However, the study of the genetic variability and assessment of the difference of pathogenicity and infectivity between strains to various hosts has been insufficiently explored to date. Most of the European HGA cases presented as a mild infection, common clinical signs being pyrexia, headache, myalgia and arthralgia. The diagnosis of HGA in the USA was recommended to be based on clinical signs and the patient’s history and later confirmed using specialized laboratory tests. However, in Europe since the majority of cases are presenting as mild infection, laboratory tests may be performed before the treatment in order to avoid antibiotic overuse. The drug of choice for HGA is doxycycline and because of potential for serious complication the treatment should be instituted on clinical suspicion alone

    Dermacentor reticulatus: a vector on the rise

    Get PDF
    Dermacentor reticulatus is a hard tick species with extraordinary biological features. It has a high reproduction rate, a rapid developmental cycle, and is also able to overcome years of unfavourable conditions. Dermacentor reticulatus can survive under water for several months and is cold-hardy even compared to other tick species. It has a wide host range: over 60 different wild and domesticated hosts are known for the three active developmental stages. Its high adaptiveness gives an edge to this tick species as shown by new data on the emergence and establishment of D. reticulatus populations throughout Europe. The tick has been the research focus of a growing number of scientists, physicians and veterinarians. Within the Web of Science database, more than a fifth of the over 700 items published on this species between 1897 and 2015 appeared in the last three years (2013–2015). Here we attempt to synthesize current knowledge on the systematics, ecology, geographical distribution and recent spread of the species and to highlight the great spectrum of possible veterinary and public health threats it poses. Canine babesiosis caused by Babesia canis is a severe leading canine vector-borne disease in many endemic areas. Although less frequently than Ixodes ricinus, D. reticulatus adults bite humans and transmit several Rickettsia spp., Omsk haemorrhagic fever virus or Tick-borne encephalitis virus. We have not solely collected and reviewed the latest and fundamental scientific papers available in primary databases but also widened our scope to books, theses, conference papers and specialists colleagues’ experience where needed. Besides the dominant literature available in English, we also tried to access scientific literature in German, Russian and eastern European languages as well. We hope to inspire future research projects that are necessary to understand the basic life-cycle and ecology of this vector in order to understand and prevent disease threats. We conclude that although great strides have been made in our knowledge of the eco-epidemiology of this species, several gaps still need to be filled with basic research, targeting possible reservoir and vector roles and the key factors resulting in the observed geographical spread of D. reticulatus. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13071-016-1599-x) contains supplementary material, which is available to authorized users
    corecore