4,682 research outputs found

    Impact of strong magnetic fields on collision mechanism for transport of charged particles

    Full text link
    One of the main applications in plasma physics concerns the energy production through thermo-nuclear fusion. The controlled fusion is achieved by magnetic confinement i.e., the plasma is confined into a toroidal domain (tokamak) under the action of huge magnetic fields. Several models exist for describing the evolution of strongly magnetized plasmas, most of them by neglecting the collisions between particles. The subject matter of this paper is to investigate the effect of large magnetic fields with respect to a collision mechanism. We consider here linear collision Boltzmann operators and derive, by averaging with respect to the fast cyclotronic motion due to strong magnetic forces, their effective collision kernels

    Cooling a quantum circuit via coupling to a multiqubit system

    Full text link
    The cooling effects of a quantum LC circuit coupled inductively with an ensemble of artificial qubits are investigated. The particles may decay independently or collectively through their interaction with the environmental vacuum electromagnetic field reservoir. For appropriate bath temperatures and the resonator's quality factors, we demonstrate an effective cooling well below the thermal background. In particular, we found that for larger samples the cooling efficiency is better for independent qubits. However, the cooling process can be faster for collectively interacting particles.Comment: 5 pages, 3 figure

    Optimal Light Beams and Mirror Shapes for Future LIGO Interferometers

    Get PDF
    We report the results of a recent search for the lowest value of thermal noise that can be achieved in LIGO by changing the shape of mirrors, while fixing the mirror radius and maintaining a low diffractional loss. The result of this minimization is a beam with thermal noise a factor of 2.32 (in power) lower than previously considered Mesa Beams and a factor of 5.45 (in power) lower than the Gaussian beams employed in the current baseline design. Mirrors that confine these beams have been found to be roughly conical in shape, with an average slope approximately equal to the mirror radius divided by arm length, and with mild corrections varying at the Fresnel scale. Such a mirror system, if built, would impact the sensitivity of LIGO, increasing the event rate of observing gravitational waves in the frequency range of maximum sensitivity roughly by a factor of three compared to an Advanced LIGO using Mesa beams (assuming all other noises remain unchanged). We discuss the resulting beam and mirror properties and study requirements on mirror tilt, displacement and figure error, in order for this beam to be used in LIGO detectors.Comment: 9 pages, 11 figure

    Loading atom lasers by collectivity-enhanced optical pumping

    Full text link
    The effect of collectivity on the loading of an atom laser via optical pumping is discussed. In our model, atoms in a beam are laser-excited and subsequently spontaneously decay into a trapping state. We consider the case of sufficiently high particle density in the beam such that the spontaneous emission is modified by the particle interaction. We show that the collective effects lead to a better population of the trapping state over a wide range of system parameters, and that the second order correlation function of the atoms can be controlled by the applied laser field.Comment: 5 pages, 7 figure

    Quantum tunneling through vacuum-multiparticle induced potentials

    Full text link
    The vacuum cavity mode induces a potential barrier and a well when an ultra-slow excited atom enters the interaction region so that it can be reflected or transmitted with a certain probability. We demonstrate here that a slow-velocity excited particle tunnels freely through a vacuum electromagnetic field mode filled with N−1N-1 ground state atoms. The reason for this is the trapping of the moving atom into its upper state due to multiparticle influences and the corresponding decoupling from the interaction with the environment such that the emitter does not {\it see} the induced potentials.Comment: Multiparticle samples, quantum tunneling, vacuum induced potential

    Fast, Efficient Calculations of the Two-Body Matrix Elements of the Transition Operators for Neutrinoless Double Beta Decay

    Full text link
    To extract information about the neutrino properties from the study of neutrinoless double-beta (0\nu\beta\beta) decay one needs a precise computation of the nuclear matrix elements (NMEs) associated with this process. Approaches based on the Shell Model (ShM) are among the nuclear structure methods used for their computation. ShM better incorporates the nucleon correlations, but have to face the problem of the large model spaces and computational resources. The goal is to develop a new, fast algorithm and the associated computing code for efficient calculation of the two-body matrix elements (TBMEs) of the 0\nu\beta{\beta} decay transition operator, which are necessary to calculate the NMEs. This would allow us to extend the ShM calculations for double-beta decays to larger model spaces, of about 9-10 major harmonic oscillator shells. The improvement of our code consists in a faster calculation of the radial matrix elements. Their computation normally requires the numerical evaluation of two-dimensional integrals: one over the coordinate space and the other over the momentum space. By rearranging the expressions of the radial matrix elements, the integration over the coordinate space can be performed analytically, thus the computation reduces to sum up a small number of integrals over momentum. Our results for the NMEs are in a good agreement with similar results from literature, while we find a significant reduction of the computation time for TBMEs, by a factor of about 30, as compared with our previous code that uses two-dimensional integrals.Comment: 6 pages, one figur
    • …
    corecore