16 research outputs found

    Resilient DC LV communities – UPB demonstrator

    Get PDF
    This work presents the architecture and operational features of a demonstrator developed at the premises of MicroDERLab Research Group at UPB that consists of two interconnected DC low voltage microgrids aiming to serve several research projects that focus on resilient DC LV communities. The architecture of the demonstrator uses a case-driven approach to validate and demonstrate the toolkits to be developed. Concretely, the demonstrator aims to facilitate the experimental assessments of several applications from monitoring and active power management of energy consumption in prosumers’ world, to aggregation of measurement data for modelling, planning, integration, operation and evaluation of distributed Energy Storage Systems. One of the major innovation of the proposed architecture consists in the extension of the functionality of the Unbundled Smart Meter (USM), the so called SMX side that processes all the information coming from the micro-controller of the energy router (ER). Simulated results of a distributed and adaptive energy management system to be tested on this demonstrator are also presented, while briefing a number of use-cases in line with several business models that led us to this design

    Energy and Information

    Get PDF

    Real-Time optimal scheduling for prosumers resilient to regulatory changes

    Get PDF
    The last decade marked an exponential increase in photovoltaic (PV) systems installed on the rooftop of domestic residences within Europe. This situation was basically favored by generous financial schemes such as Feed-in-Tariff and the market of green certificates. However, such governmental incentives drastically reduced, or they were already replaced with net-metering schemes which favor different scenarios: increase of self-consumption and decrease of grid-back injections. This unstable regulatory environment puts both new and old owners of PV systems under a regulatory financial risk. Recently, a regulatory resilient architecture, called UniRCon, was proposed, to overcome both financial and technical regulation uncertainties, where local battery energy storage system plays a key role. Besides the architecture we propose a real-time energy management system (EMS) that could be used for the daily operation of such systems. The real-time EMS is needed to prove the feasibility of this solution in short and long run and it could be also used as the main subroutine in the financial risk analysis. The EMS is based on a mixed-integer linear programming energy management tool that considers possible arbitrage benefits due to price difference in the energy purchased from the grid, while explicitly considering the efficiency of the power electronic interfaces (converters) according to the operation point. We prove our approach using a lab-scale experimental setup of a DC residential microgrid. The results are analyzed under realistic operation scenarios derived from one-year load and PV power output measurements

    On the electrostatic inertia in microgrids with inverter-based generation only—an analysis on dynamic stability

    Get PDF
    Storage4Grid project grant agreement No. 731155 RESERVE project grant agreement No. 727481 KIOS CoE grant agreement No. 739551.Microgrids are about to change the architecture and the operation principles of the future power systems towards smartness and resiliency. Power electronics technologies are key enablers for novel solutions. In this paper we analyze the benefits of a “microgrid by design” architecture (MDA), using a solid-state transformer (SST) as a low-voltage grid-former and inverter-based generation only. In this context, the microgrid stability is maintained with the help of “electrostatic energy inertia” that can be provided by the capacitor connected to the DC busbar behind the SST inverter topology. This happens in a natural way, alike the mechanical inertia in power systems with synchronous machines, however without depending on frequency and without the need of a rotational inertia. This type of microgrid always operates (both fully connected to the main grid or in islanding mode) with all the necessary mechanisms needed to maintain the microgrid stable—no matter of the perturbations in the upstream of the point of common coupling (PCC). In the case of microgrids with inverter-based generation only (including the energy storage systems), there is no mechanical inertia and different stability mechanisms need to be applied compared to the stability principle of the classical power systems. Our proposed mechanism differentiates from the recently proposed stability assessments of microgrids based on virtual synchronous generators from the control theory perspective. This paper is a continuation of our previous work where the MDA was first introduced. The use-cases and scenarios are based on realistic and yet reasonable complexities, by coupling the disturbance magnitude with the voltage stability limit in power grids. The paper finds meaningful disturbances to test the electrostatic energy inertia at the boundaries of grid stability, as guidance to understand the range of voltage variation for extreme conditions. The results show that in microgrids with inverter-based generation only and passive loads (RLC type) the operation is no longer frequency dependent. The energy of the DC busbar capacitor as electrostatic energy inertia of the MDA has a role similar to that of the rotational machines in classical grids in terms of maintaining dynamic stability, however impacting two different types of stability.publishe

    Next Generation Real-Time Smart Meters for ICT Based Assessment of Grid Data Inconsistencies

    No full text
    The latest technological developments are challenging for finding new solutions to mitigate the massive integration of renewable-based electricity generation in the electrical networks and to support new and dynamic energy and ancillary services markets. Smart meters have become ubiquitous equipment in the low voltage grid, enabled by the decision made in many countries to support massive deployments. The smart meter is the only equipment mandatory to be mounted when supplying a grid connected user, as it primarily has the function to measure delivered and/or produced energy on its common coupling point with the network, as technical and legal support for billing. Active distribution networks need new functionalities, to cope with the bidirectional energy flow behaviour of the grid, and many smart grid requirements need to be implemented in the near future. However there is no real coupling between smart metering systems and smart grids, as there is not yet a synergy using the opportunity of the high deployment level in smart metering. The paper presents a new approach for managing the smart metering and smart grid orchestration by presenting a new general design based on an unbundled smart meter (USM) concept, labelled as next generation open real-time smart meters (NORM), for integrating the smart meter, phasor measurement unit (PMU) and cyber-security through an enhanced smart metering gateway (SMG). NORM is intended to be deployed everywhere at the prosumer’s interface to the grid, as it is usually now done with the standard meter. Furthermore, rich data acquired from NORM is used to demonstrate the potential of assessing grid data inconsistencies at a higher level, as function to be deployed in distribution security monitoring centers, to address the higher level cyber-security threats, such as false data injections and to allow secure grid operations and complex market activities at the same time. The measures are considering only non-sensitive data from a privacy perspective, and is therefore able to be applied everywhere in the grid, down to the end-customer level, where a citizen’s personal data protection is an important aspect

    On the Electrostatic Inertia in Microgrids with Inverter-Based Generation Only—An Analysis on Dynamic Stability

    No full text
    Microgrids are about to change the architecture and the operation principles of the future power systems towards smartness and resiliency. Power electronics technologies are key enablers for novel solutions. In this paper we analyze the benefits of a “microgrid by design” architecture (MDA), using a solid-state transformer (SST) as a low-voltage grid-former and inverter-based generation only. In this context, the microgrid stability is maintained with the help of “electrostatic energy inertia” that can be provided by the capacitor connected to the DC busbar behind the SST inverter topology. This happens in a natural way, alike the mechanical inertia in power systems with synchronous machines, however without depending on frequency and without the need of a rotational inertia. This type of microgrid always operates (both fully connected to the main grid or in islanding mode) with all the necessary mechanisms needed to maintain the microgrid stable—no matter of the perturbations in the upstream of the point of common coupling (PCC). In the case of microgrids with inverter-based generation only (including the energy storage systems), there is no mechanical inertia and different stability mechanisms need to be applied compared to the stability principle of the classical power systems. Our proposed mechanism differentiates from the recently proposed stability assessments of microgrids based on virtual synchronous generators from the control theory perspective. This paper is a continuation of our previous work where the MDA was first introduced. The use-cases and scenarios are based on realistic and yet reasonable complexities, by coupling the disturbance magnitude with the voltage stability limit in power grids. The paper finds meaningful disturbances to test the electrostatic energy inertia at the boundaries of grid stability, as guidance to understand the range of voltage variation for extreme conditions. The results show that in microgrids with inverter-based generation only and passive loads (RLC type) the operation is no longer frequency dependent. The energy of the DC busbar capacitor as electrostatic energy inertia of the MDA has a role similar to that of the rotational machines in classical grids in terms of maintaining dynamic stability, however impacting two different types of stability

    The Smart City Concept in the 21st Century

    No full text

    Network code on requirements for generators — A discussion. Resynchronizing with paradigm shifts

    No full text
    The Network Code on Requirements for Generators, known also as RfG, is the most recent document approved by the European Commission that recommends the technical conditions for connection and operation of all types of generators in the ENTSO-E zone. Although RfG was published in the Official EU Journal in 2016, each EU member country is responsible to adopt it in the form that best suits to its characteristics. Therefore, the latest achievements in deployment of storage and renewables technologies should be also considered. Moreover, the new concepts included in the EU winter package (2016) for empowering the citizen and encouraging prosumer’s self-consumption, resilience and efficiency requires careful analysis of the document. This paper aims at identifying some shortcomings of the proposed document, based on latest technology advancements and societal aspirations, and proposes a new approach that allows synchronizing the new network codes with the smart grids paradigm shift

    Aspects of Design in Low Voltage Resilient Grids—Focus on Battery Sizing and U Level Control with P Regulation in Microgrids of Energy Communities

    No full text
    Energy communities and their resiliency are both relatively new subjects of interest that need deeper analysis. The concepts are emerging in the current trend of energy decarbonization, combined with unpredictable external factors, such as extreme weather, or nearby conflicts, such as wars. To be resilient against electrical network supply outages or heavy blackouts, energy communities need appropriate design of their electrical microgrids to maintain an acceptable level of activity in both normal and critical situations. The paper deals with aspects of the design of the electrical network used by energy communities, seen as microgrids designed to offer an acceptable level of safe operation and energy resilience. While electrical network resilience covers both the public network (main grid) and local microgrid of an energy community, the paper focuses on the safe operation and resilience related to the local microgrid as a distinct goal from the one of preserving the main grid’s functionality. The first section considers definitions of energy resilience and some of the existing preoccupations on the subject. A second section of the paper presents different aspects of the design of a microgrid, with the purpose of increasing its safety in operation and energy community resilience. The section addresses electrical network architectures, multiple roles of storage resources related to prosumers and to islanded microgrids with high-RES penetration, and other aspects such as the impact of electrification of heating through, e.g., heat pumps. The next sections present selected use cases, which develop some of these design aspects by using typical real data for the analysis and assessing solutions to address resilient microgrid challenges. The selected use cases consider simplified approaches for real-time and short-term storage needs and operational use in microgrids, maintaining voltage levels in a high-RES scenario by using battery P control, and optimization of storage resources to cope with the needs. Conclusions are given in a final section, which also presents future work for a presumed continuation with other use cases related to storage means, safe operation, and resilient design of energy communities microgrids
    corecore