5,554 research outputs found

    Fluorescence Optic Endoscopy Images Quantification

    Get PDF
    The endoscopy is a medical procedure that allows physicians to explore human body cavities without having to use invasive surgery and that provides real-time images, not as external techniques. In this field of study, the development of the optic fiber endoscopes and fluorescence microscopy have been huge advances, as they have enormously increased the quality of the resulting images, helping to make more effective diagnostics. However, the images obtained with these techniques have two problems, their small field of view and the fact that are discontinuous images. The first problem difficults making good diagnostics and the second one, difficult working with them. The program developed during this project is aimed tp solve both problems and so, ,offer better image for diagnostic and also analyze images to automatically detect sickness.Grado en Ingeniería Biomédic

    Pigou's Dividend versus Ramsey's Dividend in the Double Dividend Literature

    Get PDF
    The aims of this paper are to highlight misinterpretations of policy assessments in the double dividend literature, to specify which of the efficiency costs and benefits should be ascribed to each dividend, and then, to propose a definition for the first dividend and the second dividend. We found the Pigou's dividend more appropiate for policy guidance than the usual Ramsey's dividend. Finally, the paper analyzes a green tax reform for the US economy to illustrate the advantages of the new definitions proposed in this paper: i) overcome some shortcoming of the mainstream current definitions in the literature regarding overestimation of the efficiency costs; and, ii) provide information by themselves and not as a partial view of the whole picture.Double dividend, Green Tax Reforms, Ramsey's dividend, Pigou's dividend

    Implementing energy saving algorithms for Ethernet link aggregates with ONOS

    Full text link
    During the last few years, there has been plenty of research for reducing energy consumption in telecommunication infrastructure. However, many of the proposals remain unim-plemented due to the lack of flexibility in legacy networks. In this paper we demonstrate how the software defined networking (SDN) capabilities of current networking equipment can be used to implement some of these energy saving algorithms. In particular, we developed an ONOS application to realize an energy-aware traffic scheduler to a bundle link made up of Energy Efficient Ethernet (EEE) links between two SDN switches. We show how our application is able to dynamically adapt to the traffic characteristics and save energy by concentrating the traffic on as few ports as possible. This way, unused ports remain in Low Power Idle (LPI) state most of the time, saving energy.Comment: 8 pages, 10 figure

    Myocardial trabeculation in embryos of Scyliorhinus canicula (Elasmobranchii, Chondrichthyans)

    Get PDF
    Currently, three types of ventricular myoarchitecture are recognized in vertebrates, namely compact, spongy (trabeculated) and mixed myocardium. Mixed myocardium, which has been recently proposed as the primitive condition in gnathostomes, is composed of two myocardial layers: an inner trabeculated and an outer compact one. The trabeculation process has been studied in teleosts, showing exclusively spongy myocardium, and mammals and birds, characterized by a compact myocardial ventricular wall. In zebrafish, mouse and chicken embryos, the trabeculae develop as luminal myocardial ridges protruding into the lumen. In mammals and birds, further compactation of trabeculae leads to the formation of a compact layer. The potential mechanisms that may contribute to the formation of the ridges are under discussion and include myocardial proliferation, endocardial invagination, and bending of the entire myocardial layer. However, no description of the development of the mixed myocardium is available. To shed some light on this issue, we have studied the heart development of an elasmobranch species with mixed myocardium, the lesser spotted dogfish (Scyliorhinus canicula; Chondrichthyes), by means of histological and immunohistochemical techniques for light microscopy, semithin sections, scanning electron microscopy and transmission electron microscopy. Our results suggest that in the dogfish the intertrabecular spaces develop by connections between early intramyocardial spaces and the lumen of the ventricle through invaginations of the endocardial line. Chondrichthyans are the earliest diverged lineage of gnathostomes and, consequently, they have the most primitive cardiac design. Although chicken, mouse, and recently zebrafish have been considered powerful vertebrate models to study heart development, we propose that the trabeculation process in the dogfish is representative of the early steps of the ventricular morphogenesis in vertebrates.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech.Study supported by grant CGL2017-85090-P and CGL2014-52356-P (Ministerio de Economía y Competitividad), FPU15/03209 (Ministerio de Educación, Cultura y Deporte), FEDER, and Universidad de Málaga

    MYOCARDIAL STRUCTURE AND VASCULARIZATION OF THE HEART VENTRICLE IN HOLOCEPHALI: IMPLICATIONS FOR HEART EVOLUTION

    Get PDF
    El resumen aparece en el Program & Abstracts of the 10th International Congress of Vertebrate Morphology, Barcelona 2013. Anatomical Record, Volume 296, Special Feature — 1: P-075.It has been classically assumed that the ventricle of the primitive vertebrate heart is composed of spongy myocardium, supplied exclusively by oxygen-poor, luminal blood. This idea is on two facts: (1) extant agnathans have a spongy ventricular myocardium, and (2) in avian and mammalian embryos, the formation of trabeculated myocardium precedes the appearance of compact myocardium. Recently, it has been proposed that, like elasmobranchs, the early gnathostomes possess a fully vascularised ventricle composed of mixed myocardium. We tested this idea by studying the structure and vascularisation of the ventricular myocardium in four holocephalan species of the families Chimaeridae and Rhinochimaeridae. Chimaera monstrosa, Hidrolagus affinis and Harriotta raleighana have a spongy myocardium covered by a thin layer of cardiac muscle. In H. raleighana, the compacta is reduced to an extremely fine rim. In all three species there is a well-developed coronary artery system consisting of subepicardial vessels which give off branches that penetrate the myocardial trabeculae. Rhinochimaera atlantica has no compacta and its ventricular coronary artery system is reduced to subepicardial vessels that do not enter the spongy layer. This report is the first to show that in wild living vertebrates, a coronary artery system supplying the whole myocardium exists in the absence of a well-developed compacta, which supports experimental work that shows that myocardial cell proliferation and coronary vascular growth rely on genetically separated programs. We conclude that the mixed ventricular myocardium is primitive for chondrichthyans, and that the lack of compacta in some holocephalans is a derived character. Moreover our results support the hypotheses that the mixed myocardium is the primitive condition in gnathostomes, and that the absence of a compacta in different actinopterygian taxa is the result of its repeated loss during evolution.Proyecto CGL2010-16417/BOS; Fondos FEDE

    Single-Board-Computer Clusters for Cloudlet Computing in Internet of Things

    Get PDF
    The number of connected sensors and devices is expected to increase to billions in the near future. However, centralised cloud-computing data centres present various challenges to meet the requirements inherent to Internet of Things (IoT) workloads, such as low latency, high throughput and bandwidth constraints. Edge computing is becoming the standard computing paradigm for latency-sensitive real-time IoT workloads, since it addresses the aforementioned limitations related to centralised cloud-computing models. Such a paradigm relies on bringing computation close to the source of data, which presents serious operational challenges for large-scale cloud-computing providers. In this work, we present an architecture composed of low-cost Single-Board-Computer clusters near to data sources, and centralised cloud-computing data centres. The proposed cost-efficient model may be employed as an alternative to fog computing to meet real-time IoT workload requirements while keeping scalability. We include an extensive empirical analysis to assess the suitability of single-board-computer clusters as cost-effective edge-computing micro data centres. Additionally, we compare the proposed architecture with traditional cloudlet and cloud architectures, and evaluate them through extensive simulation. We finally show that acquisition costs can be drastically reduced while keeping performance levels in data-intensive IoT use cases.Ministerio de Economía y Competitividad TIN2017-82113-C2-1-RMinisterio de Economía y Competitividad RTI2018-098062-A-I00European Union’s Horizon 2020 No. 754489Science Foundation Ireland grant 13/RC/209
    corecore