302 research outputs found

    Homology of neocortical areas in rats and primates based on cortical type analysis: an update of the hypothesis on the dual origin of the neocortex

    Full text link
    Sixty years ago, Friedrich Sanides traced the origin of the tangential expansion of the primate neocortex to two ancestral anlagen in the allocortex of reptiles and mammals, and proposed the Hypothesis on the Dual Origin of the Neocortex. According to Sanides, paraolfactory and parahippocampal gradients of laminar elaboration expanded in evolution by addition of successive concentric rings of gradually different cortical types inside the allocortical ring. Rodents had fewer rings and primates had more rings in the inner part of the cortex. In the present article, we perform cortical type analysis of the neocortex of adult rats, Rhesus macaques, and humans to propose hypotheses on homology of cortical areas applying the principles of the Hypothesis on the Dual Origin of the Neocortex. We show that areas in the outer rings of the neocortex have comparable laminar elaboration in rats and primates, while most 6-layer eulaminate areas in the innermost rings of primate neocortex lack homologous counterparts in rats. We also represent the topological distribution of cortical types in simplified flat maps of the cerebral cortex of monotremes, rats, and primates. Finally, we propose an elaboration of the Hypothesis on the Dual Origin of the Neocortex in the context of modern studies of pallial patterning that integrates the specification of pallial sectors in development of vertebrate embryos. The updated version of the hypothesis of Sanides provides explanation for the emergence of cortical hierarchies in mammals and will guide future research in the phylogenetic origin of neocortical areasThis work was supported by grants from the National Institute of Mental Health to BZ (Grant Nos. R01 MH101209 and R01 MH118500). MAG-C was the recipient of a Beatriz Galindo senior research position in the Faculty of Medicine at Universidad AutĂłnoma de Madrid (BEAGAL18/00098) and of a Grant for I+D Projects by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad AutĂłnoma de Madrid in the line of action encouraging youth research doctors, in the context of the V PRICIT (Regional Program of Research and Technological Innovation), reference: SI2/PBG/2020-0001

    A protocol for cortical type analysis of the human neocortex applied on histological samples, the atlas of von Economo and Koskinas, and magnetic resonance imaging

    Get PDF
    The human cerebral cortex is parcellated in hundreds of areas using neuroanatomy and imaging methods. Alternatively, cortical areas can be classified into few cortical types according to their degree of laminar differentiation. Cortical type analysis is based on the gradual and systematic variation of laminar features observed across the entire cerebral cortex in Nissl stained sections and has profound implications for understanding fundamental aspects of evolution, development, connections, function, and pathology of the cerebral cortex. In this protocol paper, we explain the general principles of cortical type analysis and provide tables with the fundamental features of laminar structure that are studied for this analysis. We apply cortical type analysis to the micrographs of the Atlas of the human cerebral cortex of von Economo and Koskinas and provide tables and maps with the areas of this Atlas and their corresponding cortical type. Finally, we correlate the cortical type maps with the T1w/T2w ratio from widely used reference magnetic resonance imaging scans. The analysis, tables and maps of the human cerebral cortex shown in this protocol paper can be used to predict patterns of connections between areas according to the principles of the Structural Model and determine their level in cortical hierarchies. Cortical types can also predict the spreading of abnormal proteins in neurodegenerative diseases to the level of cortical layers. In summary, cortical type analysis provides a theoretical and practical framework for directed studies of connectivity, synaptic plasticity, and selective vulnerability to neurologic and psychiatric diseases in the human neocortex.This work was supported by the National Institute of Mental Health (grant nos. R01 MH101209 and R01 MH118500). MG-C was the recipient of a Beatriz Galindo senior research position in the Faculty of Medicine at Universidad AutĂłnoma de Madrid (BEAGAL18/00098) and of a Grant for ICD Projects for the Beatriz Galindo Program Researchers at Universidad AutĂłnoma de Madrid (SI2/PBG/2020-00014

    Stereotaxic cutting of post-mortem human brains for neuroanatomical studies

    Full text link
    Stereotaxis is widely used in clinical neurosurgery, neuroradiosurgery, and neuroimaging. Yet, maps of brain structures obtained from post-mortem human brains are not usually presented in known stereotaxic coordinates. Post-mortem brain data given in stereotaxic coordinates would facilitate comparisons with in vivo human neuroimages and would also facilitate intra and inter-experiment comparisons. In this article, we present a crafted instrument for stereotaxic cutting of post-mortem human brain hemispheres. The instrument consists of a transparent methacrylate plate facing a mirror, four legs, and lateral regularly spaced columns permitting the insertion of large knives in-between the columns. This instrument can be built in any laboratory to obtain human brain slabs in the stereotaxic space of Talairach and Tournoux. We explain in detail the procedure for stereotaxic cutting of human brain hemispheres in the coronal plane, as well as the basis for calculating stereotaxic coordinates of histological sections obtained following the stereotaxic cutting protoco

    Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents

    Full text link
    Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei
). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuableOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. CC and IP-S were the recipients of grants from Chair in Neuroscience UAM-FundaciĂłn Tatiana PĂ©rez de GuzmĂĄn el Bueno, Spain. MAG-C was the recipient of a Beatriz Galindo senior research position in the School of Medicine, Universidad AutĂłnoma de Madrid (BEAGAL18/00098) and of a Grant for I+D Projects to the Beatriz Galindo Program Researchers at Universidad AutĂłnoma de Madrid (SI2/PBG/2020–00014) from the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad AutĂłnoma de Madrid in the line of action encouraging young research doctors, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation

    The epic of the thalamus in anatomical language

    Full text link
    Understanding the origin of Greek and Latin words used as metaphors to label brain structures gives a unique window into how scientific and medical knowledge was produced, preserved, and transmitted through generations. The history of the term thalamus exemplifies the complex historical process that led to the current anatomical terminology. From its first mention by Galen of Pergamon in the 2nd century A.D. to its definitive and current use by Thomas Willis in 1664, the thalamus had an epical journey through 1500 years across Europe, the Middle East, and the North of Africa. The thalamus was confusingly described by Galen, in the Greek language, as a chamber to the brain ventricles. The term thalamus was transferred from Greek to Syriac through the translations of Galen’s books done in Baghdad and also from Syriac to Arabic. Then, it was translated in Europe during the Middle Ages from the Arabic versions of Galen’s books to Latin. Later, during the Early Renaissance, it was translated again to Latin directly from the Greek versions of Galen’s books. Along this epical journey through languages, the term thalamus switched from referring to a hollow structure connected to brain ventricles to naming a solid structure at the rostral end of the brainstem. Finally, the thalamus was translated from Latin to modern languages, where it is used, until today, to name a nuclear complex of subcortical gray matter in the lateral walls of the third ventricl

    Mapping the primate thalamus: historical perspective and modern approaches for defining nuclei

    Full text link
    The primate thalamus has been subdivided into multiple nuclei and nuclear groups based on cytoarchitectonic, myeloarchitectonic, connectional, histochemical, and genoarchitectonic differences. Regarding parcellation and terminology, two main schools prevailed in the twentieth century: the German and the Anglo-American Schools, which proposed rather different schemes. The German parcellation and terminology has been mostly used for the human thalamus in neurosurgery atlases; the Anglo-American parcellation and terminology is the most used in experimental research on the primate thalamus. In this article, we review the historical development of terminological and parcellation schemes for the primate thalamus over the last 200 years. We trace the technological innovations and conceptual advances in thalamic research that underlie each parcellation, from the use of magnifying lenses to contemporary genoarchitectonic stains during ontogeny. We also discuss the advantages, disadvantages, and practical use of each parcellationCC and IP-S were the recipients of grants from Chair in Neuroscience UAM-FundaciĂłn Tatiana PĂ©rez de GuzmĂĄn el Bueno, Spain. MAG-C was the recipient of a Beatriz Galindo senior research position in the School of Medicine, Universidad AutĂłnoma de Madrid (BEAGAL18/00098) and of a Grant for I + D Projects for the Beatriz Galindo Program Researchers at Universidad AutĂłnoma de Madrid (SI2/PBG/2020-00014) from the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with Universidad AutĂłnoma de Madrid in the line of action encouraging youth research doctors, in the context of the V PRICIT (Regional Programme of Research and Technological Innovation

    Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features

    Get PDF
    The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic, and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease

    The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex

    Full text link
    Published in final edited form as: Brain Struct Funct. 2019 April ; 224(3): 985–1008. doi:10.1007/s00429-019-01841-9.The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.R01 MH057414 - NIMH NIH HHS; R01 MH101209 - NIMH NIH HHS; R01 MH101209 - National Institute of Mental Health; R01 MH057414 - National Institute of Mental Health; R01 MH117785 - NIMH NIH HHS; R01 MH117785 - National Institute of Mental Health; R01 NS024760 - National Institute of Neurological Disorders and Stroke (US); R01 NS024760 - NINDS NIH HHSAccepted manuscrip

    Corrosion evaluation of austenitic and duplex stainless steels in molten carbonate salts at 600 °C for thermal energy storage

    Get PDF
    Next-generation concentrated solar power (CSP) plants are required to operate at temperatures as high as possible to reach a better energy efficiency. This means significant challenges for the construction materials in terms of corrosion resistance, among others. In the present work, the corrosion behavior in a molten eutectic ternary Li2CO3-Na2CO3-K2CO3 mixture at 600 °C was studied for three stainless steels: an austenitic grade AISI 301LN (SS301) and two duplex grades, namely 2205 (DS2205) and 2507 (DS2507). Corrosion tests combined with complementary microscopy, microanalysis and mechanical characterization techniques were employed to determine the corrosion kinetics of the steels and the oxide scales formed on the surface. The results showed that all three materials exhibited a corrosion kinetics close to a parabolic law, and their corrosion rates increased in the following order: DS2507 < SS301 < DS2205. The analyses of the oxide scales evidenced an arranged multilayer system with LiFeO2, LiCrO2, FeCr2O4 and NiO as the main compounds. While the Ni-rich inner layer of the scales presented a good adhesion to the metallic substrate, the outer layer formed by LiFeO2 exhibited a higher concentration of porosity and voids. Both the Cr and Ni contents at the inner layer and the defects at the outer layer were crucial for the corrosion resistance for each steel. Among the studied materials, super duplex stainless steel 2507 is found to be the most promising alternative for thermal energy storage of those structural components for CSP plants.Peer ReviewedPostprint (published version
    • 

    corecore