25,124 research outputs found

    Power Spectrum Sensitivity and the Design of Epoch of Reionization Observatories

    Full text link
    Recent theoretical developments for observing the Epoch of Reionization (EOR) have concentrated on the power spectrum signature of redshifted 21 cm emission. These studies have demonstrated the great potential of statistical EOR observations, however, the sensitivity calculations for proposed low frequency radio arrays have been highly approximate. The formalism developed for interferometric measurements of the cosmic microwave background can be extended to three dimensions to naturally incorporate the line-of-sight information inherent in the EOR signal. In this paper we demonstrate how to accurately calculate the EOR power spectrum sensitivity of an array, and develop scaling relationships which can be used to guide the design of EOR observatories. The implications for antenna distribution, antenna size, and correlator requirements on the EOR sensitivity are detailed.Comment: 7 pages, 3 figures, submitted to Ap

    JuliBootS: a hands-on guide to the conformal bootstrap

    Full text link
    We introduce {\tt JuliBootS}, a package for numerical conformal bootstrap computations coded in {\tt Julia}. The centre-piece of {\tt JuliBootS} is an implementation of Dantzig's simplex method capable of handling arbitrary precision linear programming problems with continuous search spaces. Current supported features include conformal dimension bounds, OPE bounds, and bootstrap with or without global symmetries. The code is trivially parallelizable on one or multiple machines. We exemplify usage extensively with several real-world applications. In passing we give a pedagogical introduction to the numerical bootstrap methods.Comment: 29 page

    Accessing the Influence of Hess-Murray Law on Suspension Flow through Ramified Structures

    Get PDF
    The present study focuses on fluid flow and particle transport in symmetric T-shaped structures formed by tubes with circular and square cross-section. The performances of optimized structures (i.e., structures designed based on constructal allometric laws for minimum flow resistance) and not optimized structures were studied. Flow resistance and particle penetration efficiency were studied both for laminar and turbulent flow regimes, and for micrometer and submicrometer particles. Optimized structures have been proven to perform better for fluid flow but they have a similar performance for particle transport

    Time-Symmetric ADI and Causal Reconnection: Stable Numerical Techniques for Hyperbolic Systems on Moving Grids

    Get PDF
    Moving grids are of interest in the numerical solution of hydrodynamical problems and in numerical relativity. We show that conventional integration methods for the simple wave equation in one and more than one dimension exhibit a number of instabilities on moving grids. We introduce two techniques, which we call causal reconnection and time-symmetric ADI, which together allow integration of the wave equation with absolute local stability in any number of dimensions on grids that may move very much faster than the wave speed and that can even accelerate. These methods allow very long time-steps, are fully second-order accurate, and offer the computational efficiency of operator-splitting.Comment: 45 pages, 19 figures. Published in 1994 but not previously available in the electronic archive
    • …
    corecore