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Abstract.  The present study focuses on fluid flow and particle transport in symmetric T-shaped 

structures formed by tubes with circular and square cross-section. The performances of optimized 

structures (i.e., structures designed based on constructal allometric laws for minimum flow 

resistance) and not optimized structures were studied. Flow resistance and particle penetration 

efficiency were studied both for laminar and turbulent flow regimes, and for micrometer and 

submicrometer particles. Optimized structures have been proven to perform better for fluid flow but 

they have a similar performance for particle transport.  

Introduction 

Flow of suspensions (particles) in complex flow structures occurs both in animate and inanimate 

systems [1], and is of interest in many fields of science and technology [2]. Examples include 

aerosol sampling devices [3], particle-, fibre- and membrane-based filtration technologies [2,4,5], 

but also micro-mixers technology for aerosol processing [6]. T-shaped mixers are widely used 

because of their simple geometry and advantages in comparison to batch-operated mixer [7]. 

Methodologies used in engineering frequently involve the use the aerosol flows, which have to be 

quick mixed or rapid delivered to a target [7,8].   

The aim of this work is to numerically study the fluid flow and aerosol transport in T-shaped 

structures. Hess [9] and Murray [10] suggested that an optimum relationship exists between 

consecutive diameters of bifurcating tubes that minimizes the power to maintain the laminar flow 

(allometric scaling law). Bejan’s constructal theory [11], based on resistance minimization, 

provided a theoretical basis for this allometric law and extended it to consecutive tube lengths of 

bifurcating tubes under laminar and turbulent flows [12,13]. 

A comprehensive review of allometric laws in bifurcating flow structure is provided by [14,15]. 

Therefore, a systematic study was performed to compare the performance of geometry optimized 

structures and not optimized structures in the regard of flow resistance and also penetration 

efficiency of submicrometer and micrometer particles. 
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Model And Numerical Solution  

T-Shaped Flow Structure. We simulate fluid and particles suspension flows through 4 t-shaped 

structures with circular and square cross-section (see Fig. 1). 

 (a) 

 
(b) 

Figure 1.  Symmetric T-shaped structures with circular (a) and square (b) cross-section. 

 

The flow resistance in bifurcated pipes can be minimized under some special pipe design. Consider 

that the area covered by the geometry and the total volume allocated to the piping system are kept 

constant [11-16]. For laminar flow, the minimum flow resistance is achieved if the diameters and 

the lengths of consecutive pipes in a bifurcation are related as [14] 
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with λd=dh3/dh2 and λL=L3/L2. For symmetric pipes (λd=λL=1), these equations become  
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Equation (3) is nothing more than the Hess-Murray law. For turbulent flow, the diameters and 

lengths of consecutive symmetric pipes were also optimized by Bejan et al. [12], and the following 

expressions were obtained 
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Notice also that the geometric ratio of dh/L is preserved in going from each pipe to its branch in 

laminar flow (i.e., each pipe is geometrically similar to its tributary or collector). For turbulent flow, 

the constructal law shows that the geometric ratio of dh/L
3
 is preserved in going from each duct to 

its branch (i.e. dh1/L1
3
= dh2/L2

3
). 
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Significance of junction losses on the geometry of bifurcation is obtained based on the svelteness 

number, Sv, which is given by the ratio between the external length scale and the internal length 

scale of the system [14,16]. 
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Table 1. Geometric characteristics of symmetric T-shaped structures (R: circular cross-section; S: 

square cross-section; C: constructal (i.e., designed according to Eqs. (3)-(6)) 

Regime Pipe geometry Name D1 (cm) D2-D3 (cm) L1 (cm) L2-L3 (cm) Area (cm2) Volume (cm3) 

Laminar 

Round 
R 0.44 0.44 5.35 5.35 

57.2 2.4 
RC 0.50 0.40 6.00 4.76 

Square 
S 0.44 0.44 5.35 5.35 

SC 0.45 0.36 6.00 4.76 

Turbulent 

Round 
R 0.44 0.44 5.35 5.35 

57.2 2.4 
RC 0.52 0.39 5.62 5.09 

Square 
S 0.39 0.39 5.35 5.35 

SC 0.46 0.34 5.62 5.09 

Table 1 displays the geometric characteristics of each structure. Data depicted in this table show 

that the svelteness number is about 6 for all the geometries. Therefore, the junction losses have 

minor sizable effects on the diameter ratio because Sv is lower than the square root of 10 [17]. 

Numerical Procedure for Fluid Flow and Particle Dynamics. The steady state flow field is 

defined by the 3D Navier-Stokes equations together with the standard k-ε model of turbulence and

solved numerically using the code FLUENT [18] which is based on a finite volume method. The 

airflow is assumed to be incompressible. The non-slip boundary conditions are set along the walls. 

The flat velocity profile is prescribed at the inlet while pressure outlet boundary conditions are set at 

the outlet. 

The geometries and correspondent grids were generated in Gambit [18]. The accuracy of our 

numerical simulations was validated with respect to refinement and spatial resolution of the grid 

based on the methodology proposed by Roache [19] and Sidi [20]. Grids with 9740–9810 cells and 

5257–5268 nodes are found to be appropriate for the present study. 

Airflows for Reynolds numbers, based on the hydraulic diameter of the inlet tube, ranging from 20 

to 5000, were considered. Once the solution of air flow was obtained, each particle trajectory was 

then calculated. All particles are assumed to be spherical.  The trajectory of each particle is 

predicted by integrating the force balance on the particle [4,8,21] 
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Here the first right-hand term represents the drag force, the second right-hand term is the “virtual 

mass” force required to accelerate the fluid surrounding the particle, the third right-hand term is the 

force due to pressure gradient in the fluid, the fourth right-hand term is the gravitational force, the 

fifth right-hand term denotes a force arising from Brownian collisions [2], u is the fluid velocity, up 

is particle velocity, Re is the Reynolds number, ρp is the particle density cd is drag coefficient, ρ is

the fluid density, µ is the dynamic viscosity, t is the time and g is the gravity constant. The

components of random force (third fifth-hand term) are evaluated at each time step. In this setup, 

particles that touch the solid walls stick to it at first collision. 
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Particles (density 1 kg/m
3
, diameters between 0.1 and 100 µm) are introduced at the inlet of the T-

shaped structure, and tracked through the geometry until they are trapped on the solid walls or 

escape through the outlet of the structure. 

Results 

The velocity and pressure fields in the T-shaped structures R, RC, S and SC were numerically 

obtained for a range of Reynolds number (Re=ρudh/µ) between 20 and 5000. The resistance

through each structure can be modeled in terms of Darcy–Weisbach friction factor [2] 
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Here u is the inlet velocity, p is the pressure, dh is the hydraulic diameter and f is the Darcy–

Weisbach friction factor. Equation (9) is successfully correlated with the data of our numerical 

simulations and the friction factor f is obtained from the best fit of these data. The results are 

presented in Table 2. The table shows that the friction factor for constructal T-shaped structures 

(RC, SC) is smaller than for configurations R and S. Besides, structures with a circular cross-

section present lower friction factor than structures with square cross-section. 

Table 2. Darcy–Weisbach friction factor for the T-shaped structures. 

Geometry Regime Sv 
Friction 

Factor 

R 

Laminar 

6.1 0.76 

RC 6.0 0.52 

S 6.1 0.88 

SC 6.3 0.61 

R 

Turbulent 

6.0 10.46 

RC 6.0 5.65 

S 6.4 12.47 

SC 6.4 6.83 

Figure 2 shows the air velocity within RC and R structure under laminar and turbulent flow. In spite 

of the area covered by the geometry, the total volume allocated to the piping system and svelteness 

number are similar, profile of velocities (and pressure) is different. The major differences are in the 

bifurcation. For Re=20, the constructal configuration (RC) presents more uniform velocity. For 

Re=3500, the plot reveals a well-defined “preferential channel” having also a more uniform 

velocity. 

(R) (RC) 

Figure 2a.  Velocity magnitude (middle iso-surface) for R and RC structure (Reynolds 20) 
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(R) (RC) 

Figure 2B.  Velocity magnitude (middle iso-surface) for R and RC structure (Reynolds 3500) 

The penetration efficiency, η, defined as the number of particles counted at the outlet sections of the

T-shaped structure divided by the number of particles at the inlet, is depicted in Table 3. It is 

observed that the penetration efficiency is mainly determined by the diameter of the particles. 

Constructal and non-constructal T-shaped structures present similar values of penetration efficiency 

but structures with circular cross-section pipes show higher values of η than square cross-section

pipes. The table also documents that under laminar and turbulent flow regime, η is almost

insensitive to the Reynolds number. For turbulent flow all particles with diameters of 10, 50 and 

100 µm deposit inside the T-shaped structure. The deposition of these particles is mainly induced

by inertial particle deposition where the structure has sharp angles: particles cannot follow the 

streamlines due to their inertia, and impact on the surface of the wall where they adhere. 

Table 3. The penetration efficiency versus the particle diameter for R, RC, S and SC structures. 

Re 

R (Sv=6.1) RC (Sv=6.0) S (Sv=6.1) SC (Sv=6.3) 

dp (µm) dp (µm) dp (µm) dp (µm) 

0.1 10 50 100 0.1 10 50 100 0.1 10 50 100 0.1 10 50 100 

20 0.94 0.96 0.47 0.00 0.90 0.93 0.45 0.00 0.87 0.88 0.27 0.02 0.89 0.88 0.35 0.01 

40 0.90 0.91 0.05 0.00 0.91 0.93 0.10 0.00 0.87 0.83 0.05 0.00 0.90 0.87 0.09 0.01 

60 0.90 0.92 0.01 0.00 0.90 0.92 0.01 0.00 0.88 0.83 0.03 0.00 0.89 0.86 0.03 0.00 

80 0.90 0.88 0.00 0.00 0.91 0.90 0.00 0.00 0.91 0.84 0.02 0.00 0.89 0.88 0.02 0.00 

Re 

R (Sv=6.0) RC (Sv=6.0) S (Sv=6.4) SC (Sv=6.4) 

dp (µm) dp (µm) dp (µm) dp (µm) 

0.1 10 50 100 0.1 10 50 100 0.1 10 50 100 0.1 10 50 100 

1500 0.91 0.00 0.00 0.00 0.94 0.00 0.00 0.00 0.81 0.04 0.00 0.00 0.85 0.00 0.00 0.00 

2500 0.92 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.84 0.01 0.00 0.00 0.88 0.00 0.00 0.00 

3500 0.92 0.00 0.00 0.00 0.93 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.91 0.00 0.00 0.00 

5000 0.92 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.90 0.00 0.00 0.00 

Deposition of particles may be analyzed in terms of the Peclet number, Pe. This dimensionless 

number measures the relative importance of convection to diffusion and is given by [1,2] 

hud
Pe

D
=  (10) 

and the particle diffusion coefficient D is calculated from 

3

c

p

KTc
D

dπµ
=  (11) 

where K is the Boltzmann constant, T is the absolute fluid temperature and  the cc is the 

Cunningham nonslip correction. As the Peclet number increases, the diffusion process becomes less 

important. For high Pe diffusion losses are very small and deposition is inside the inertia-dominated 

regime.  
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Figure 3 shows the penetration efficiency versus the Peclet number. The penetration efficiency 

depicted in this figure reveal a small decrease up to Pe~10
9
. After, the η versus Pe curve starts to

decrease abruptly which means that the inertia-dominated deposition regime starts to be prevalent. 

The particle dynamics at low Peclet numbers should be characterized by higher residence times 

within the flow structure [2]. This is an important factor in several industrial applications. Figure 4 

shows clearly a decrease of the residence time with the Peclet number. An abrupt decrease of the 

penetration efficiency (i.e., the start of inertia-dominated deposition regime) is linked to a very 

small residences time inside the T-shaped structure. 

Figure 3.  The penetration efficiency versus the Peclet number. 

Figure 4.  Average particle residence times versus the Peclet number (white-filled symbols 0.1 µm,

black-filled symbols 10 µm)
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Conclusions 

This study shows that constructal-shaped structures are the easiest path (least resistance) that 

connects one point with an infinity of points (line, area, or volume) and vice-versa. Beside, T-

shaped structures with circular cross-section have less resistance to flow than square cross-section. 

Constructal and non-constructal T-shaped structures present similar values of penetration efficiency 

but structures with circular cross-section show higher values than square cross-section pipes. The 

penetration of particles is almost insensitive to the Reynolds number but is strong dependent on the 

Peclet number. The residence time within the T-shaped structure is related with the Peclet number is 

also provided. 
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