1,663 research outputs found
Glitter-like iridescence within the bacteroidetes especially Cellulophaga spp.: optical properties and correlation with gliding motility.
This is the final version of the article. Available from the publisher via the DOI in this record.Iridescence results from structures that generate color. Iridescence of bacterial colonies has recently been described and illustrated. The glitter-like iridescence class, created especially for a few strains of Cellulophaga lytica, exhibits an intense iridescence under direct illumination. Such color appearance effects were previously associated with other bacteria from the Bacteroidetes phylum, but without clear elucidation and illustration. To this end, we compared various bacterial strains to which the iridescent trait was attributed. All Cellulophaga species and additional Bacteroidetes strains from marine and terrestrial environments were investigated. A selection of bacteria, mostly marine in origin, were found to be iridescent. Although a common pattern of reflected wavelengths was recorded for the species investigated, optical spectroscopy and physical measurements revealed a range of different glitter-like iridescence intensity and color profiles. Importantly, gliding motility was found to be a common feature of all iridescent colonies. Dynamic analyses of "glitter" formation at the edges of C. lytica colonies showed that iridescence was correlated with layer superposition. Both gliding motility, and unknown cell-to-cell communication processes, may be required for the establishment, in time and space, of the necessary periodic structures responsible for the iridescent appearance of Bacteroidetes.PV acknowledges the support of AFOSR grant FA9550-10-1-0020. BK was a PhD student with a grant from the Ministe`re de la recherche et de
l’enseignement supe´rieur. ER acknowledges the support of CNRS grant AIR75515 (‘‘Bacte´ridescence’’ project). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript
Spontaneous deformation of the Fermi surface due to strong correlation in the two-dimensional t-J model
Fermi surface of the two-dimensional t-J model is studied using the
variational Monte Carlo method. We study the Gutzwiller projected d-wave
superconducting state with an additional variational parameter t'_v
corresponding to the next-nearest neighbor hopping term. It is found that the
finite t'_v<0 gives the lowest variational energy in the wide range of
hole-doping rates. The obtained momentum distribution function shows that the
Fermi surface deforms spontaneously. It is also shown that the van Hove
singularity is always located very close to the Fermi energy. Using the
Gutzwiller approximation, we show that this spontaneous deformation is due to
the Gutzwiller projection operator or the strong correlation.Comment: 4 pages, 3 eps figures, revte
Insulator-to-metal transition in Kondo insulators under strong magnetic field
Magnetization curve and changes of the single-particle excitation spectra by
magnetic field are calculated for the periodic Anderson model at half-filling
in infinite spatial dimension by using the exact diagonalization method. It is
found that the field-induced insulator-to-metal transition occurs at a critical
field , which is of the order of the single ion Kondo temperature. The
transition is of first order, but could be of second order in the infinite
system size limit. These results are compared with the experiments on the Kondo
insulator YbB.Comment: 11 pages, REVTEX, no figures; 7 figures available on request; To
appear in Phys. Rev. B, Mar.15, 199
High-pressure transport properties of CeRu_2Ge_2
The pressure-induced changes in the temperature-dependent thermopower S(T)
and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the
single-site Anderson model. The Ce-ions are treated as impurities and the
coherent scattering on different Ce-sites is neglected. Changing the
hybridisation \Gamma between the 4f-states and the conduction band accounts for
the pressure effect. The transport coefficients are calculated in the
non-crossing approximation above the phase boundary line. The theoretical S(T)
and \rho(T) curves show many features of the experimental data. The seemingly
complicated temperature dependence of S(T) and \rho(T), and their evolution as
a function of pressure, is related to the crossovers between various fixed
points of the model.Comment: 9 pages, 10 figure
Microscopic theory of quadrupolar ordering in TmTe
We have calculated the crystal electric field of TmTe (T>T_Q) and have
obtained that the ground state of a Tm 4f hole is the doublet in
agreement with Mossbauer experiments. We study the quadrupole interactions
arising from quantum transitions of 4f holes of Tm. An effective attraction is
found at the L point of the Brillouin zone, . Assuming that the
quadrupolar condensation involves a single arm of we show that
there are two variants for quadrupole ordering which are described by the space
groups C2/c and C2/m. The Landau free energy is derived in mean-field theory.
The phase transition is of second order. The corresponding quadrupole order
parameters are combinations of and components. The obtained
domain structure is in agreement with observations from neutron diffraction
studies for TmTe. Calculated lattice distortions are found to be different for
the two variants of quadrupole ordering. We suggest to measure lattice
displacements in order to discriminate between those two structures.Comment: 10 pages, 2 figures, 5 tables; accepted by PR
The diagnostic value of power spectra analysis of the sleep electroencephalography in narcoleptic patients
Antiferroquadrupolar Order in the Magnetic Semiconductor TmTe
The physical properties of the antiferroquadrupolar state occurring in TmTe
below TQ=1.8 K have been studied using neutron diffraction in applied magnetic
fields. A field-induced antiferromagnetic component k = (1/2,1/2,1/2) is
observed and, from its magnitude and direction for different orientations of H,
an O(2,2) quadrupole order parameter is inferred. Measurements below TN ~= 0.5
K reveal that the magnetic structure is canted, in agreement with theoretical
predictions for in-plane antiferromagnetism. Complex domain repopulation
effects occur when the field is increased in the ordered phases, with
discontinuities in the superstructure peak intensities above 4 T.Comment: 6 pages, 6 figures, Presented at the International Conference on
Strongly Correlated Electrons with Orbital Degrees of Freedom (ORBITAL 2001),
September 11-14, 2001 (Sendai, JAPAN). To appear in: Journal of the Physical
Society of Japan (2002
- …
