79 research outputs found

    Calcium and cell fate preface.

    Get PDF

    High Extracellular Ca2+ Stimulates Ca2+-Activated Cl− Currents in Frog Parathyroid Cells through the Mediation of Arachidonic Acid Cascade

    Get PDF
    Elevation of extracellular Ca2+ concentration induces intracellular Ca2+ signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca2+ pathways, but the direct mechanism responsible for the rise of intracellular Ca2+ concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca2+ signaling in frog parathyroid cells and show that Ca2+-activated Cl− channels are activated by intracellular Ca2+ increase through an inositol 1,4,5-trisphophate (IP3)-independent pathway. High extracellular Ca2+ induced an outwardly-rectifying conductance in a dose-dependent manner (EC50∼6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca2+-induced and Ca2+ dialysis-induced currents reversed at the equilibrium potential of Cl− and were inhibited by niflumic acid (a specific blocker of Ca2+-activated Cl− channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca2+-induced current, suggesting the change of intracellular Cl− concentration in a few minutes. Extracellular Ca2+-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca2+-induced current. IP3 dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca2+-induced conductance. These results indicate that high extracellular Ca2+ raises intracellular Ca2+ concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl− conductance

    Regulation of STIM1 and SOCE by the Ubiquitin-Proteasome System (UPS)

    Get PDF
    The ubiquitin proteasome system (UPS) mediates the majority of protein degradation in eukaryotic cells. The UPS has recently emerged as a key degradation pathway involved in synapse development and function. In order to better understand the function of the UPS at synapses we utilized a genetic and proteomic approach to isolate and identify novel candidate UPS substrates from biochemically purified synaptic membrane preparations. Using these methods, we have identified Stromal interacting molecule 1 (STIM1). STIM1 is as an endoplasmic reticulum (ER) calcium sensor that has been shown to regulate store-operated Ca2+ entry (SOCE). We have characterized STIM1 in neurons, finding STIM1 is expressed throughout development with stable, high expression in mature neurons. As in non-excitable cells, STIM1 is distributed in a membranous and punctate fashion in hippocampal neurons. In addition, a population of STIM1 was found to exist at synapses. Furthermore, using surface biotinylation and live-cell labeling methods, we detect a subpopulation of STIM1 on the surface of hippocampal neurons. The role of STIM1 as a regulator of SOCE has typically been examined in non-excitable cell types. Therefore, we examined the role of the UPS in STIM1 and SOCE function in HEK293 cells. While we find that STIM1 is ubiquitinated, its stability is not altered by proteasome inhibitors in cells under basal conditions or conditions that activate SOCE. However, we find that surface STIM1 levels and thapsigargin (TG)-induced SOCE are significantly increased in cells treated with proteasome inhibitors. Additionally, we find that the overexpression of POSH (Plenty of SH3′s), an E3 ubiquitin ligase recently shown to be involved in the regulation of Ca2+ homeostasis, leads to decreased STIM1 surface levels. Together, these results provide evidence for previously undescribed roles of the UPS in the regulation of STIM1 and SOCE function

    Different patterns of Ca2+ signals are induced by low compared to high concentrations of P2Y agonists in microglia

    Get PDF
    Brain-resident macrophages (microglia) are key cellular elements in the preservation of tissue integrity. On the other hand, they can also contribute to the development of pathological events by causing an extensive and inappropriate inflammatory response. A growing number of reports indicate the involvement of nucleotides in the control of microglial functions. With this study on P2Y receptors in rat microglia, we want to contribute to the definition of their expression profile and to the characterisation of their signalling mechanisms leading to Ca2+ movements. Endogenous nucleotides, when applied at a concentration of 100 μM, elicited robust Ca2+ transients, thanks to a panel of metabotropic receptors comprising mainly P2Y2, P2Y6 and P2Y12 subtypes. The involvement of P2Y12 receptors in Ca2+ responses induced by adenine nucleotides was confirmed by the pharmacological and pertussis toxin sensitivity of the response induced by adenosine diphosphate (ADP). Beside the G protein involved, Gi and Gq respectively, adenine and uracil nucleotides differed also for induction by the latter of a capacitative Ca2+ plateau. Moreover, when applied at low (sub-micromolar) concentrations with a long-lasting challenge, uracil nucleotides elicited oscillatory Ca2+ changes with low frequency of occurrence (≤ 1 min−), sometimes superimposed to an extracellular Ca2+-dependent sustained Ca2+ rise. We conclude that different patterns of Ca2+ transients are induced by low (i.e., oscillatory Ca2+ activity) compared to high (i.e., fast release followed by sustained raise) concentrations of nucleotides, which can suggest different roles played by receptor stimulation depending not only on the type but also on the concentration of nucleotides

    High-Throughput Analysis of Promoter Occupancy Reveals New Targets for Arx, a Gene Mutated in Mental Retardation and Interneuronopathies

    Get PDF
    Genetic investigations of X-linked intellectual disabilities have implicated the ARX (Aristaless-related homeobox) gene in a wide spectrum of disorders extending from phenotypes characterised by severe neuronal migration defects such as lissencephaly, to mild or moderate forms of mental retardation without apparent brain abnormalities but with associated features of dystonia and epilepsy. Analysis of Arx spatio-temporal localisation profile in mouse revealed expression in telencephalic structures, mainly restricted to populations of GABAergic neurons at all stages of development. Furthermore, studies of the effects of ARX loss of function in humans and animal models revealed varying defects, suggesting multiple roles of this gene during brain development. However, to date, little is known about how ARX functions as a transcription factor and the nature of its targets. To better understand its role, we combined chromatin immunoprecipitation and mRNA expression with microarray analysis and identified a total of 1006 gene promoters bound by Arx in transfected neuroblastoma (N2a) cells and in mouse embryonic brain. Approximately 24% of Arx-bound genes were found to show expression changes following Arx overexpression or knock-down. Several of the Arx target genes we identified are known to be important for a variety of functions in brain development and some of them suggest new functions for Arx. Overall, these results identified multiple new candidate targets for Arx and should help to better understand the pathophysiological mechanisms of intellectual disability and epilepsy associated with ARX mutations

    Animal Ca2+ release-activated Ca2+ (CRAC) channels appear to be homologous to and derived from the ubiquitous cation diffusion facilitators

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antigen stimulation of immune cells triggers Ca<sup>2+ </sup>entry through Ca<sup>2+ </sup>release-activated Ca<sup>2+ </sup>(CRAC) channels, promoting an immune response to pathogens. Defects in a CRAC (Orai) channel in humans gives rise to the hereditary Severe Combined Immune Deficiency (SCID) syndrome. We here report results that define the evolutionary relationship of the CRAC channel proteins of animals, and the ubiquitous Cation Diffusion Facilitator (CDF) carrier proteins.</p> <p>Findings</p> <p>CDF antiporters derived from a primordial 2 transmembrane spanner (TMS) hairpin structure by intragenic triplication to yield 6 TMS proteins. Four programs (IC/GAP, GGSEARCH, HMMER and SAM) were evaluated for identifying sequence similarity and establishing homology using statistical means. Overall, the order of sensitivity (similarity detection) was IC/GAP = GGSEARCH > HMMER > SAM, but the use of all four programs was superior to the use of any two or three of them. Members of the CDF family appeared to be homologous to members of the 4 TMS Orai channel proteins.</p> <p>Conclusions</p> <p>CRAC channels derived from CDF carriers by loss of the first two TMSs of the latter. Based on statistical analyses with multiple programs, TMSs 3-6 in CDF carriers are homologous to TMSs 1-4 in CRAC channels, and the former was the precursor of the latter. This is an unusual example of how a functionally and structurally more complex protein may have predated a simpler one.</p
    • …
    corecore