82 research outputs found

    A missense mutation of Leu74Pro of OGR1 found in familial amelogenesis imperfecta actually causes the loss of the pH-sensing mechanism

    Get PDF
    Ovarian cancer G protein-coupled receptor 1 (OGR1), also known as GPR68, is a proton-sensing G protein-coupled receptor (GPCR) coupling to Gq/11/phospholipase C/Ca2+ signaling pathways. The specific histidine residues at the extracellular surface of OGR1 are suggested to be involved in the proton sensing. Later, some metal ions, including nickel ion (Ni2+), are also indicated to be OGR1 ligands. OGR1 polymorphic variants have recently been found in three families with amelogenesis imperfecta, which suggested that OGR1 is required for the process of dental enamel formation. One of these families possesses a missense mutation from leucine to proline at 74 (L74P) of OGR1. In the present study, we characterized HEK293 cells with L74P OGR1 (L74P-OGR1) and hemagglutinin (HA)-tag, as compared with cells with wild-type OGR1 (WT-OGR1) and HA-tag. We found that either acidic pH or NiCl2 induced intracellular Ca2+ mobilization and morphological change in WT-OGR1-transfected cells; however, the extracellular stimulus-induced actions were severely damaged in L74P-OGR1-transfected cells. We further confirmed that either WT-OGR1 or L74P-OGR1 is localized mainly in the surface of the cells, but only WT-OGR1 is internalized in response to acidification or NiCl2. Thus, the L74P-OGR1 protein may be distributed in the plasma membranes but severely damaged in the receptor functions. We speculate that L74P in the second transmembrane domain in OGR1 may result in conformational changes in the receptor, thereby disturbing the sensing extracellular signals, i.e., protons or metal ions, and/or transducing them to the intracellular signaling machinery through G proteins

    Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid

    The burden of dental care in Amelogenesis Imperfecta paediatric patients in the UK NHS: a retrospective, multi-centred analysis

    Get PDF
    PURPOSE: The burden of dental care in Amelogenesis Imperfecta (AI) has not been well described. This condition results in weak, discoloured and often sensitive teeth. Specialist paediatric care is available for AI patients in the UK, but treatment protocols and care provided are inconsistent. The aim of this study was therefore to analyse the provision of treatment and burden of care for children and families with AI across four Paediatric Dentistry centres in the UK. METHODS: A retrospective evaluation of AI patient clinical records across four UK consultant-led Paediatric Dentistry centres was completed. Frequency and duration of care were recorded along with treatment and experience of inhalation sedation, local and general anaesthetic. RESULTS: In total, 138 records were available for analysis. The average patient age at first referral was 7.7 years (range 1-16 years) and families travelled an average 21.8 miles per appointment (range 0.2-286 miles). Patients attended on average 4.5 appointments per year for 5.8 years. In total, 65.2% had experience of local anaesthetic, 27.5% inhalation sedation and 31.9% general anaesthetic. Dental treatment including restorations and extractions were commonly required on multiple teeth per patient. CONCLUSION: AI carries a high burden of specialist dental care to patients and families. Specialist centres are required to provide longitudinal, comprehensive care

    New missense variants in RELT causing hypomineralised amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) is a heterogeneous group of genetic diseases characterised by dental enamel malformation. Pathogenic variants in at least 33 genes cause syndromic or non‐syndromic AI. Recently variants in RELT, encoding an orphan receptor in the tumour necrosis factor (TNF) superfamily, were found to cause recessive AI, as part of a syndrome encompassing small stature and severe childhood infections. Here we describe four additional families with autosomal recessive hypomineralised AI due to previously unreported homozygous mutations in RELT. Three families carried a homozygous missense variant in the fourth exon (c.164C > T, p.[T55I]) and a fourth family carried a homozygous missense variant in the 11th exon (c.1264C > T, p.[R422W]). We found no evidence of additional syndromic symptoms in affected individuals. Analyses of tooth microstructure with computerized tomography and scanning electron microscopy suggest a role for RELT in ameloblasts' coordination and interaction with the enamel matrix. Microsatellite genotyping in families segregating the T55I variant reveals a shared founder haplotype. These findings extend the RELT pathogenic variant spectrum, reveal a founder mutation in the UK Pakistani population and provide detailed analysis of human teeth affected by this hypomineralised phenotype, but do not support a possible syndromic presentation in all those with RELT‐variant associated AI

    Pathognomonic oral profile of Enamel Renal Syndrome (ERS) caused by recessive FAM20A mutations

    Get PDF
    Amelogenesis imperfecta (AI) is a genetically and clinically heterogeneous group of inherited dental enamel defects. Commonly described as an isolated trait, it may be observed concomitantly with other orodental and/or systemic features such as nephrocalcinosis in Enamel Renal Syndrome (ERS, MIM#204690), or gingival hyperplasia in Amelogenesis Imperfecta and Gingival Fibromatosis Syndrome (AIGFS, MIM#614253). Patients affected by ERS/AIGFS present a distinctive orodental phenotype consisting of generalized hypoplastic AI affecting both the primary and permanent dentition, delayed tooth eruption, pulp stones, hyperplastic dental follicles, and gingival hyperplasia with variable severity and calcified nodules. Renal exam reveals a nephrocalcinosis which is asymptomatic in children affected by ERS. FAM20A recessive mutations are responsible for both syndromes. We suggest that AIGFS and ERS are in fact descriptions of the same syndrome, but that the kidney phenotype has not always been investigated fully in AIGFS. The aim of this review is to highlight the distinctive and specific orodental features of patients with recessive mutations in FAM20A. We propose ERS to be the preferred term for all the phenotypes arising from recessive FAM20A mutations. A differential diagnosis has to be made with other forms of AI, isolated or syndromic, where only a subset of the clinical signs may be shared. When ERS is suspected, the patient should be assessed by a dentist, nephrologist and clinical geneticist. Confirmed cases require long-term follow-up. Management of the orodental aspects can be extremely challenging and requires the input of multi-disciplinary specialized dental team, especially when there are multiple unerupted teeth

    Development of a managed clinical network in oral medicine

    Get PDF
    Oral medicine is concerned with the oral health care of patients with chronic, recurrent and medically related disorders of the oral and maxillofacial region, and with their diagnosis and non-surgical management. For historical reasons care for conditions falling within the scope of oral medicine practice has been inconsistent with limited planning of clinical services. Managed Clinical Networks (MCNs) bring advantages to all stakeholders with a positive impact on patient pathways and access to equitable and quality care across a network of providers working in a coordinated way to make best use of NHS resources. MCNs provide a framework to address the limitations of legacy arrangements and are very relevant to dentistry. Here we describe oral medicine MCN development in Yorkshire and the Humber within the framework of the Five year forward view NHS policy. A step-wise approach is being taken across the region to introduce an MCN model that reflects cooperative working between oral medicine, oral surgery, oral & maxillofacial surgery and other stakeholders. Preliminary data are already informing how a regional oral medicine MCN can be further developed with the potential for translation of the lessons learned to other regions

    A Fourth KLK4 Mutation Is Associated with Enamel Hypomineralisation and Structural Abnormalities

    Get PDF
    “Amelogenesis imperfecta” (AI) describes a group of genetic conditions that result in defects in tooth enamel formation. Mutations in many genes are known to cause AI, including the gene encoding the serine protease, kallikrein related peptidase 4 (KLK4), expressed during the maturation stage of amelogenesis. In this study we report the fourth KLK4 mutation to be identified in autosomal recessively-inherited hypomaturation type AI, c.632delT, p.(L211Rfs*37) (NM_004917.4, NP_004908.4). This homozygous variant was identified in five Pakistani AI families and is predicted to result in a transcript with a premature stop codon that escapes nonsense mediated decay. However, the protein may misfold, as three of six disulphide bonds would be disrupted, and may be degraded or non-functional as a result. Primary teeth were obtained from one affected individual. The enamel phenotype was characterized using high-resolution computerized X-ray tomography (CT), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and microhardness testing (MH). Enamel from the affected individual (referred to as KLK4 enamel) was hypomineralised in comparison with matched control enamel. Furthermore, KLK4 inner enamel was hypomineralised compared with KLK4 outer enamel. SEM showed a clear structural demarcation between KLK4 inner and outer enamel, although enamel structure was similar to control tissue overall. EDX showed that KLK4 inner enamel contained less calcium and phosphorus and more nitrogen than control inner enamel and KLK4 outer enamel. MH testing showed that KLK4 inner enamel was significantly softer than KLK4 outer enamel (p < 0.001). However, the hardness of control inner enamel was not significantly different to that of control outer enamel. Overall, these findings suggest that the KLK4 c.632delT mutation may be a common cause of autosomal recessive AI in the Pakistani population. The phenotype data obtained mirror findings in the Klk4‾/‾ mouse and suggest that KLK4 is required for the hardening and mineralization of the inner enamel layer but is less essential for hardening and mineralization of the outer enamel layer

    Regions identity between the genome of vertebrates and non-retroviral families of insect viruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The scope of our understanding of the evolutionary history between viruses and animals is limited. The fact that the recent availability of many complete insect virus genomes and vertebrate genomes as well as the ability to screen these sequences makes it possible to gain a new perspective insight into the evolutionary interaction between insect viruses and vertebrates. This study is to determine the possibility of existence of sequence identity between the genomes of insect viruses and vertebrates, attempt to explain this phenomenon in term of genetic mobile element, and try to investigate the evolutionary relationship between these short regions of identity among these species.</p> <p>Results</p> <p>Some of studied insect viruses contain variable numbers of short regions of sequence identity to the genomes of vertebrate with nucleotide sequence length from 28 bp to 124 bp. They are found to locate in multiple sites of the vertebrate genomes. The ontology of animal genes with identical regions involves in several processes including chromatin remodeling, regulation of apoptosis, signaling pathway, nerve system development and some enzyme-like catalysis. Phylogenetic analysis reveals that at least some short regions of sequence identity in the genomes of vertebrate are derived the ancestral of insect viruses.</p> <p>Conclusion</p> <p>Short regions of sequence identity were found in the vertebrates and insect viruses. These sequences played an important role not only in the long-term evolution of vertebrates, but also in promotion of insect virus. This typical win-win strategy may come from natural selection.</p

    Phenotype and variant spectrum in the LAMB3 form of amelogenesis imperfecta

    Get PDF
    Amelogenesis imperfecta (AI) is a heterogeneous group of inherited disorders characterized by abnormal formation of dental enamel, either in isolation or as part of a syndrome. Heterozygous variants in laminin subunit beta 3 (LAMB3) cause AI with dominant inheritance in the absence of other cosegregating clinical features. In contrast, biallelic loss-of-function variants in LAMB3 cause recessive junctional epidermolysis bullosa, characterized by life-threatening skin fragility. We identified 2 families segregating autosomal dominant AI with variable degrees of a distinctive hypoplastic phenotype due to pathogenic variants in LAMB3. Whole exome sequencing revealed a nonsense variant (c.3340G>T, p.E1114*) within the final exon in family 1, while Sanger sequencing in family 2 revealed a variant (c.3383-1G>A) in the canonical splice acceptor site of the final exon. Analysis of cDNA from family 2 revealed retention of the final intron leading to a premature termination codon. Two unerupted third molar teeth from individual IV:5 in family 2 were subject to computerized tomography and scanning electron microscopy. LAMB3 molar teeth have a multitude of cusps versus matched controls. LAMB3 enamel was well mineralized but pitted. The architecture of the initially secreted enamel was abnormal, with cervical enamel appearing much less severely affected than coronal enamel. This study further defines the variations in phenotype-genotype correlation for AI due to variants in LAMB3, underlines the clustering of nonsense and frameshift variants causing AI in the absence of junctional epidermolysis bullosa, and highlights the shared AI phenotype arising from variants in genes coding for hemidesmosome proteins

    PseudoGeneQuest – Service for identification of different pseudogene types in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudogenes, nonfunctional copies of genes, evolve fast due the lack of evolutionary pressures and thus appear in several different forms. PseudoGeneQuest is an online tool to search the human genome for a given query sequence and to identify different types of pseudogenes as well as novel genes and gene fragments.</p> <p>Description</p> <p>The service can detect pseudogenes, that have arisen either by retrotransposition or segmental genome duplication, many of which are not listed in the public pseudogene databases. The service has a user-friendly web interface and uses a powerful computer cluster in order to perform parallel searches and provide relatively fast runtimes despite exhaustive database searches and analyses.</p> <p>Conclusion</p> <p>PseudoGeneQuest is a versatile tool for detecting novel pseudogene candidates from the human genome. The service searches human genome sequences for five types of pseudogenes and provides an output that allows easy further analysis of observations. In addition to the result file the system provides visualization of the results linked to Ensembl Genome Browser. PseudoGeneQuest service is freely available.</p
    corecore