33 research outputs found

    Activation of mTOR coincides with autophagy during ligation-induced atrophy in the rat submandibular gland

    Get PDF
    Salivary gland atrophy is a common consequence of pathology, including Sjögren's syndrome, irradiation therapy and obstructive sialadenitis. During severe atrophy of the rat submandibular gland caused by excretory duct ligation, the majority of acinar cells disappear through apoptosis, whereas ductal cells proliferate and dedifferentiate; yet, the gland can survive in the atrophic state almost indefinitely, with an ability to fully recover if deligated. The control mechanisms governing these observations are not well understood. We report that ∼10% of acinar cells survive in ligation-induced atrophy. Microarray and quantitative real-time PCR analysis of ligated glands indicated sustained transcription of acinar cell-specific genes, whereas ductal-specific genes were reduced to background levels. After 3 days of ligation, activation of the mammalian target of rapamycin (mTOR) pathway and autophagy occurred as shown by phosphorylation of 4E-BP1 and expression of autophagy-related proteins. These results suggest that activation of mTOR and the autophagosomal pathway are important mechanisms that may help to preserve acinar cells during atrophy of salivary glands after injury

    Leishmania amazonensis Arginase Compartmentalization in the Glycosome Is Important for Parasite Infectivity

    Get PDF
    In Leishmania, de novo polyamine synthesis is initiated by the cleavage of L-arginine to urea and L-ornithine by the action of arginase (ARG, E.C. 3.5.3.1). Previous studies in L. major and L. mexicana showed that ARG is essential for in vitro growth in the absence of polyamines and needed for full infectivity in animal infections. The ARG protein is normally found within the parasite glycosome, and here we examined whether this localization is required for survival and infectivity. First, the localization of L. amazonensis ARG in the glycosome was confirmed in both the promastigote and amastigote stages. As in other species, arg− L. amazonensis required putrescine for growth and presented an attenuated infectivity. Restoration of a wild type ARG to the arg− mutant restored ARG expression, growth and infectivity. In contrast, restoration of a cytosol-targeted ARG lacking the glycosomal SKL targeting sequence (argΔSKL) restored growth but failed to restore infectivity. Further study showed that the ARGΔSKL protein was found in the cytosol as expected, but at very low levels. Our results indicate that the proper compartmentalization of L. amazonensis arginase in the glycosome is important for enzyme activity and optimal infectivity. Our conjecture is that parasite arginase participates in a complex equilibrium that defines the fate of L-arginine and that its proper subcellular location may be essential for this physiological orchestration

    A highly mutagenised barley (cv. Golden Promise) TILLING population coupled with strategies for screening-by-sequencing

    Get PDF
    Background:We developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the 'reference' genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates. Results:Sequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations. Conclusions:We developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.Miriam Schreiber, Abdellah Barakate, Nicola Uzrek, Malcolm Macaulay, Adeline Sourdille, Jenny Morris, Pete E. Hedley, Luke Ramsay and Robbie Waug

    Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism

    Get PDF
    Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts

    A MAP4 kinase related to Ste20 is a nutrient-sensitive regulator of mTOR signalling

    Get PDF
    The mTOR (mammalian target of rapamycin) signalling pathway is a key regulator of cell growth and is controlled by growth factors and nutrients such as amino acids. Although signalling pathways from growth factor receptors to mTOR have been elucidated, the pathways mediating signalling by nutrients are poorly characterized. Through a screen for protein kinases active in the mTOR signalling pathway in Drosophila we have identified a Ste20 family member (MAP4K3) that is required for maximal S6K (S6 kinase)/4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] phosphorylation and regulates cell growth. Importantly, MAP4K3 activity is regulated by amino acids, but not the growth factor insulin and is not regulated by the mTORC1 inhibitor rapamycin. Our results therefore suggest a model whereby nutrients signal to mTORC1 via activation of MAP4K3.Abbreviations: DMEM, Dulbecco's modified Eagle's medium; DPBS, Dulbecco's PBS; dsRNA, double-stranded RNA; eIF4E, eukaryotic initiation factor 4E; 4E-BP1, eIF4E-binding protein; FCS, foetal calf serum; ERK, extracellular-signal-regulated kinase; GST, glutathione S-transferase; HA, haemagglutinin; HEK, human embryonic kidney; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; MBP, myelin basic protein; MEM, minimal essential medium; Msn, misshapen; mTOR, mammalian target of rapamycin; p90RSK, p90 ribosomal S6 kinase; PI3K, phosphoinositide 3-kinase; PKB, protein kinase B; RNAi, RNA interfering; PTEN, phosphatase and tensin homologue deleted on chromosome 10; siRNA, small interference RNA; TSC, tuberous sclerosis complex; TSC1-2, TSC1–TSC2 comple

    S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover

    No full text
    A defect in protein turnover underlies multiple forms of cell atrophy. Since S6 kinase (S6K)-deficient cells are small and display a blunted response to nutrient and growth factor availability, we have hypothesized that mutant cell atrophy may be triggered by a change in global protein synthesis. By using mouse genetics and pharmacological inhibitors targeting the mammalian target of rapamycin (mTOR)/S6K pathway, here we evaluate the control of translational target phosphorylation and protein turnover by the mTOR/S6K pathway in skeletal muscle and liver tissues. The phosphorylation of ribosomal protein S6 (rpS6), eukaryotic initiation factor-4B (eIF4B), and eukaryotic elongation factor-2 (eEF2) is predominantly regulated by mTOR in muscle cells. Conversely, in liver, the MAPK and phosphatidylinositol 3-kinase pathways also play an important role, suggesting a tissue-specific control. S6K deletion in muscle mimics the effect of the mTOR inhibitor rapamycin on rpS6 and eIF4B phosphorylation without affecting eEF2 phosphorylation. To gain insight on the functional consequences of these modifications, methionine incorporation and polysomal distribution were assessed in muscle cells. Rates and rapamycin sensitivity of global translation initiation are not altered in S6K-deficient muscle cells. In addition, two major pathways of protein degradation, autophagy and expression of the muscle-specific atrophy-related E3 ubiquitin ligases, are not affected by S6K deletion. Our results do not support a role for global translational control in the growth defect due to S6K deletion, suggesting specific modes of growth control and translational target regulation downstream of mTOR

    Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program

    No full text
    International audienceS6 kinases (S6Ks) are mechanistic target of rapamycin substrates that participate in cell growth control. S6Ks phosphorylate ribosomal protein S6 (rpS6) and additional proteins involved in the translational machinery, although the functional roles of these modifications remain elusive. Here we analyze the S6K-dependent transcriptional and translational regulation of gene expression by comparing whole-genome microarray of total and polysomal mouse liver RNA after feeding. We show that tissue lacking S6Ks 1 and 2 (S6K1 and S6K2), displays a defect in the ribosome biogenesis (RiBi) transcriptional program after feeding. Over 75% of RiBi factors are controlled by S6K, including Nop56, Nop14, Gar1, Rrp9, Rrp15, Rrp12 and Pwp2 nucleolar proteins. Importantly, the reduced activity of RiBi transcriptional promoters in S6K1;S6K2(-/-) cells is also observed in rpS6 knock-in mutants that cannot be phosphorylated. As ribosomal protein synthesis is not affected by these mutations, our data reveal a distinct and specific aspect of RiBi under the control of rpS6 kinase activity, that is, the RiBi transcriptional program

    TPL-2-Mediated Activation of MAPK Downstream of TLR4 Signaling Is Coupled to Arginine Availability

    No full text
    The innate immune response is influenced by the nutrient status of the host. Mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinase 1 (ERK1) and ERK2, are activated after the stimulation of macrophages with bacterial lipopolysaccharide (LPS) and are necessary for the optimal production of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha). We uncovered a role for the extracellular nutrient arginine in the activation of ERK1/2 in LPS-stimulated macrophages. Arginine facilitated the activation of MAPKs by preventing the dephosphorylation and inactivation of the MAPK kinase kinase tumor-promoting locus 2 (TPL-2). Starvation of mice decreased the concentration of arginine in the plasma and impaired the activation of ERK1/2 by LPS. Supplementation of starved mice with arginine promoted the subsequent activation of ERK1/2 and the production of TNF-alpha in response to LPS. Thus, arginine is critical for two aspects of the innate immune response in macrophages: It is the precursor used in the generation of the antimicrobial mediator nitric oxide, and it facilitates MAPK activation and consequently cytokine production
    corecore