177 research outputs found

    Z-Source Inverter for Automotive Applications

    Get PDF

    DC/DC Converters for Electric Vehicles

    Get PDF
    International audienceThe large number of automobiles in use around the world has caused and continues to cause serious problems of environment and human life. Air pollution, global warming, and the rapid depletion of the earth’s petroleum resources are now serious problems. Electric Vehicles (EVs), Hybrid Electric Vehicles (HEVs) and Fuel Cell Electric Vehicles (FCEVs) have been typically proposed to replace conventional vehicles in the near future. Most electric and hybrid electric configurations use two energy storage devices, one with high energy storage capability, called the “main energy system” (MES), and the other with high power capability and reversibility, called the “rechargeable energy storage system” (RESS). MES provides extended driving range, and RESS provides good acceleration and regenerative braking. Energy storage or supply devices vary their output voltage with load or state of charge and the high voltage of the DC-link create major challenges for vehicle designers when integrating energy storage / supply devices with a traction drive. DC-DC converters can be used to interface the elements in the electric power train by boosting or chopping the voltage levels. Due to the automotive constraints, the power converter structure has to be reliable, lightweight, small volume, with high efficiency, low electromagnetic interference and low current/voltage ripple. Thus, in this chapter, a comparative study on three DC/DC converters topologies (Conventional step-up dc-dc converter, interleaved 4-channels step-up dc-dc converter with independent inductors and Full-Bridge step-up dc-dc converter) is carried out. The modeling and the control of each topology are presented. Simulations of 30KW DC/DC converter are carried out for each topology. This study takes into account the weight, volume, current and voltage ripples, Electromagnetic Interference (EMI) and the efficiency of each converter topology

    Electrifying light commercial vehicles for city logistics? A total cost of ownership analysis

    Get PDF
    Different measures are considered by the authorities to tackle the negative impacts of city logistics. Among them, battery electric vehicles are seen as a promising solution, but high purchase cost represents an important barrier to their adoption. However, these vehicles benefit also from low operational costs. This different cost structure between electric and conventional vehicles makes therefore a comprehensive cost analysis necessary for fleet managers who want to assess the real competitiveness of the vehicles. Hence, we developed a total cost of ownership model to assess the competitiveness of quadricycles and light commercial vehicles for freight transport companies. This paper presents the results for 7 battery electric vehicles, 5 diesel vehicles and 3 petrol vehicles. The results of a sensitivity analysis explored also the possible measures that can support their competitiveness. The model shows that battery electric vehicles have a better competitive position than petrol vehicles but they do not compete yet with diesel vehicles. A sensitivity analysis shows however that their total cost of ownership can become lower than diesel vehicles depending on their utilization, future market conditions or government support. Still, electric quadricycles appear to be currently an affordable solution for transport operators to adopt electric vehicles since their total costs of ownership is lower than diesel light commercial vehicles

    Batteries and Supercapacitors for Electric Vehicles

    Get PDF
    International audienceDue to increasing gas prices and environmental concerns, battery propelled electric vehicles (BEVs) and hybrid electric vehicles (HEVs) have recently drawn more attention. In BEV and HEV configurations, the rechargeable energy storage system (RESS) is a key design issue [1–3]. Thus, the system should be able to have good performances in terms of energy density and power capabilities during acceleration and braking phases. However, the thermal stability, charge capabilities, life cycle and cost can be considered also as essential assessment parameters for RESS systems.Presently batteries are used as energy storage devices in most applications. These batteries should be sized to meet the energy and power requirements of the vehicle. Furthermore, the battery should have good life cycle performances. However, in many BEV applications the required power is the key factor for battery sizing, resulting in an over-dimensioned battery pack [4,5] and less optimal use of energy [4]. These shortcomings could be solved by combination of battery system with supercapacitors [6–8]. In [9], it is documented that such hybridization topologies can result into enhancing the battery performances by increasing its life cycle, rated capacity, reducing the energy losses and limiting the temperature rising inside the battery. Omar et al. concluded that these beneficial properties are due to the averaging of the power provided by the battery system [4,6,9]. However, the implementation of supercapacitors requires a bidirectional DC–DC converter, which is still expensive. Furthermore, such topologies need a well-defined energy flow controller (EFC). Price, volume and low rated voltage (2.5–3 V) hamper the combination of battery with supercapacitors [6,10]. In order to overcome these difficulties, Cooper et al. introduced the Ultra-Battery, which is a combination of lead-acid and supercapacitor in the same cell [11]. The new system encompasses a part asymmetric and part conventional negative plate. The proposed system allows to deliver and to absorb energy at very high current rates. The Ultra-Batteries have been tested successfully in the Honda Insight. However, this technology is still under development. In the last decade, a number of new lithium-ion battery chemistries have been proposed for vehicular applications. In [12–15], it is reported that the most relevant lithium-ion chemistries in vehicle applications are limited to lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC), lithium nickel cobalt aluminum oxide (NCA), lithium manganese spinel in the positive electrode and lithium titanate oxide (LTO) in the negative electrode. In this chapter, the performance and characteristics of various lithium-ion based batteries and supercapacitor will be evaluated and discussed. The evaluation will be mainly based on the electrical behavior. Then the characteristics of these RESS systems will be investigated based on the electrical and thermal models

    Environmental impacts of hybrid, plug-in hybrid, and battery electric vehicles—what can we learn from life cycle assessment?

    Get PDF
    PurposeThe purpose of this review article is to investigate the usefulness of different types of life cycle assessment (LCA) studies of electrified vehicles to provide robust and relevant stakeholder information. It presents synthesized conclusions based on 79 papers. Another objective is to search for explanations to divergence and “complexity” of results found by other overviewing papers in the research field, and to compile methodological learnings. The hypothesis was that such divergence could be explained by differences in goal and scope definitions of the reviewed LCA studies.MethodsThe review has set special attention to the goal and scope formulation of all included studies. First, completeness and clarity have been assessed in view of the ISO standard’s (ISO 2006a, b) recommendation for goal definition. Secondly, studies have been categorized based on technical and methodological scope, and searched for coherent conclusions.Results and discussionComprehensive goal formulation according to the ISO standard (ISO 2006a, b) is absent in most reviewed studies. Few give any account of the time scope, indicating the temporal validity of results and conclusions. Furthermore, most studies focus on today’s electric vehicle technology, which is under strong development. Consequently, there is a lack of future time perspective, e.g., to advances in material processing, manufacturing of parts, and changes in electricity production. Nevertheless, robust assessment conclusions may still be identified. Most obvious is that electricity production is the main cause of environmental impact for externally chargeable vehicles. If, and only if, the charging electricity has very low emissions of fossil carbon, electric vehicles can reach their full potential in mitigating global warming. Consequently, it is surprising that almost no studies make this stipulation a main conclusion and try to convey it as a clear message to relevant stakeholders. Also, obtaining resources can be observed as a key area for future research. In mining, leakage of toxic substances from mine tailings has been highlighted. Efficient recycling, which is often assumed in LCA studies of electrified vehicles, may reduce demand for virgin resources and production energy. However, its realization remains a future challenge.ConclusionsLCA studies with clearly stated purposes and time scope are key to stakeholder lessons and guidance. It is also necessary for quality assurance. LCA practitioners studying hybrid and electric vehicles are strongly recommended to provide comprehensive and clear goal and scope formulation in line with the ISO standard (ISO 2006a, b)

    Experimental implementation of power-split control strategies in a versatile hardware-in-the-loop laboratory test bench for hybrid electric vehicles equipped with electrical variable transmission

    Get PDF
    The energy management strategy (EMS) or power management strategy (PMS) unit is the core of power sharing control in the hybridization of automotive drivetrains in hybrid electric vehicles (HEVs). Once a new topology and its corresponding EMS are virtually designed, they require undertaking different stages of experimental verifications toward guaranteeing their real-world applicability. The present paper focuses on a new and less-extensively studied topology of such vehicles, HEVs equipped with an electrical variable transmission (EVT) and assessed the controllability validation through hardware-in-the-loop (HiL) implementations versus model-in-the-loop (MiL) simulations. To this end, first, the corresponding modeling of the vehicle components in the presence of optimized control strategies were performed to obtain the MiL simulation results. Subsequently, an innovative versatile HiL test bench including real prototyped components of the topology was introduced and the corresponding experimental implementations were performed. The results obtained from the MiL and HiL examinations were analyzed and statistically compared for a full input driving cycle. The verification results indicate robust and accurate actuation of the components using the applied EMSs under real-time test conditions

    Electricity generation in LCA of electric vehicles: A review

    Get PDF
    Life Cycle assessments (LCAs) on electric mobility are providing a plethora of diverging results. 44 articles, published from 2008 to 2018 have been investigated in this review, in order to find the extent and the reason behind this deviation. The first hurdle can be found in the goal definition, followed by the modelling choice, as both are generally incomplete and inconsistent. These gaps influence the choices made in the Life Cycle Inventory (LCI) stage, particularly in regards to the selection of the electricity mix. A statistical regression is made with results available in the literature. It emerges that, despite the wide-ranging scopes and the numerous variables present in the assessments, the electricity mix's carbon intensity can explain 70% of the variability of the results. This encourages a shared framework to drive practitioners in the execution of the assessment and policy makers in the interpretation of the results
    • …
    corecore