8 research outputs found

    Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage

    Get PDF
    This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.Authors report no declarations of interest. Authors thank the Portuguese Foundation for Science and Technology (FCT) for the PhD fellowship of Elena G. Popa (SFRH/BD/64070/2009) and research project (MIT/ECE/0047/2009). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS

    Informing future cartilage repair strategies: a comparative study of three different human cell types for cartilage tissue engineering.

    Get PDF
    A major clinical need exists for cartilage repair and regeneration. Despite many different strategies having been pursued, the identification of an optimised cell type and of pre-treatment conditions remains a challenge. This study compares the cartilage-like tissue generated by human bone marrow stromal cells (HBMSCs) and human neonatal and adult chondrocytes cultured on three-dimensional (3D) scaffolds under various conditions in vitro and in vivo with the aim of informing future cartilage repair strategies based upon tissue-engineering approaches. After 3 weeks in vitro culture, all three cell types showed cartilage-like tissue formation on 3D poly (lactide-co-glycolide) acid scaffolds only when cultured in chondrogenic medium. After 6 weeks of chondro-induction, neonatal chondrocyte constructs revealed the most cartilage-like tissue formation with a prominent superficial zone-like layer, a middle zone-like structure and the thinnest fibrous capsule. HBMSC constructs had the thickest fibrous capsule formation. Under basal culture conditions, neonatal articular chondrocytes failed to form any tissue, whereas HBMSCs and adult chondrocytes showed thick fibrous capsule formation at 6 weeks. After in vivo implantation, all groups generated more compact tissues compared with in vitro constructs. Pre-culturing in chondrogenic media for 1 week before implantation reduced fibrous tissue formation in all cell constructs at week 3. After 6 weeks, only the adult chondrocyte group pre-cultured in chondrogenic media was able to maintain a more chondrogenic/less fibrocartilaginous phenotype. Thus, pre-culture under chondrogenic conditions is required to maintain a long-term chondrogenic phenotype, with adult chondrocytes being a more promising cell source than HBMSCs for articular cartilage tissue engineering

    Common Skeletal Growth Retardation Disorders Resulting from Abnormalities within the Mesenchymal Stem Cells Reservoirs in the Epiphyseal Organs Pertaining to the Long Bones

    No full text

    Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies

    No full text
    The objective of this study was to assess the impact of a landmark annular lesion model on our understanding of the etiopathogenesis of IVD degeneration and to appraise current IVD repairative strategies. A number of studies have utilised the Osti sheep model since its development in 1990. The experimental questions posed at that time are covered in this review, as are significant recent advances in annular repair strategies. The ovine model has provided important spatial and temporal insights into the longitudinal development of annular lesions and how they impact on other discal and paradiscal components such as the NP, cartilaginous end plates, zygapophyseal joints and vertebral bone and blood vessels. Important recent advances have been made in biomatrix design for IVD repair and in the oriented and dynamic culture of annular fibrochondrocytes into planar, spatially relevant, annular type structures. The development of hyaluronan hydrogels capable of rapid in situ gelation offer the possibility of supplementation of matrices with cells and other biomimetics and represent a significant advance in biopolymer design. New generation biological glues and self-curing acrylic formulations which may be augmented with slow delivery biomimetics in microcarriers may also find application in the non-surgical repair of annular defects. Despite major advances, significant technical challenges still have to be overcome before the biological repair of this intractable connective tissue becomes a realistic alternative to conventional surgical intervention for the treatment of chronic degenerate IVDs
    corecore