59 research outputs found

    Cigarette smoke extract induces a phenotypic shift in epithelial cells: involvement of HIF1α in mesenchymal transition

    Get PDF
    In COPD, matrix remodeling contributes to airflow limitation. Recent evidence suggests that next to fibroblasts, the process of epithelial-mesenchymal transition can contribute to matrix remodeling. CSE has been shown to induce EMT in lung epithelial cells, but the signaling mechanisms involved are largely unknown and subject of this study. EMT was assessed in A549 and BEAS2B cells stimulated with CSE by qPCR, Western blotting and immunofluorescence for epithelial and mesenchymal markers, as were collagen production, cell adhesion and barrier integrity as functional endpoints. Involvement of TGF-beta and HIF1 alpha signaling pathways were investigated. In addition, mouse models were used to examine the effects of CS on hypoxia signaling and of hypoxia per se on mesenchymal expression. CSE induced EMT characteristics in A549 and BEAS2B cells, evidenced by decreased expression of epithelial markers and a concomitant increase in mesenchymal marker expression after CSE exposure. Furthermore cells that underwent EMT showed increased production of collagen, decreased adhesion and disrupted barrier integrity. The induction of EMT was found to be independent of TGF-beta signaling. On the contrary, CS was able to induce hypoxic signaling in A549 and BEAS2B cells as well as in mice lung tissue. Importantly, HIF1 alpha knock-down prevented induction of mesenchymal markers, increased collagen production and decreased adhesion after CSE exposure, data that are in line with the observed induction of mesenchymal marker expression by hypoxia in vitro and in vivo. Together these data provide evidence that both bronchial and alveolar epithelial cells undergo a functional phenotypic shift in response to CSE exposure which can contribute to increased collagen deposition in COPD lungs. Moreover, HIF1 alpha signaling appears to play an important role in this process

    Aggravation of allergic airway inflammation by cigarette smoke in mice is CD44-dependent

    Get PDF
    Background : Although epidemiological studies reveal that cigarette smoke (CS) facilitates the development and exacerbation of allergic asthma, these studies offer limited information on the mechanisms involved. The transmembrane glycoprotein CD44 is involved in cell adhesion and acts as a receptor for hyaluronic acid and osteopontin. We aimed to investigate the role of CD44 in a murine model of CS-facilitated allergic airway inflammation. Methods : Wild type (WT) and CD44 knock-out (KO) mice were exposed simultaneously to house dust mite (HDM) extract and CS. Inflammatory cells, hyaluronic acid (HA) and osteopontin (OPN) levels were measured in bronchoalveolar lavage fluid (BALF). Proinflammatory mediators, goblet cell metaplasia and peribronchial eosinophilia were assessed in lung tissue. T-helper (Th) 1, Th2 and Th17 cytokine production was evaluated in mediastinal lymph node cultures. Results : In WT mice, combined HDM/CS exposure increased the number of inflammatory cells and the levels of HA and OPN in BALF and Th2 cytokine production in mediastinal lymph nodes compared to control groups exposed to phosphate buffered saline (PBS)/CS, HDM/Air or PBS/Air. Furthermore, HDM/CS exposure significantly increased goblet cell metaplasia, peribronchial eosinophilia and inflammatory mediators in the lung. CD44 KO mice exposed to HDM/CS had significantly fewer inflammatory cells in BALF, an attenuated Th2 cytokine production, as well as decreased goblet cells and peribronchial eosinophils compared to WT mice. In contrast, the levels of inflammatory mediators were similar or higher than in WT mice. Conclusion : We demonstrate for the first time that the aggravation of pulmonary inflammation upon combined exposure to allergen and an environmental pollutant is CD44-dependent. Data from this murine model of concomitant exposure to CS and HDM might be of importance for smoking allergic asthmatics

    IL6 and CRP haplotypes are associated with COPD risk and systemic inflammation: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated circulating levels of C-reactive protein (CRP), interleukin (IL)-6 and fibrinogen (FG) have been repeatedly associated with many adverse outcomes in patients with chronic obstructive pulmonary disease (COPD). To date, it remains unclear whether and to what extent systemic inflammation is primary or secondary in the pathogenesis of COPD.</p> <p>The aim of this study was to examine the association between haplotypes of <it>CRP</it>, <it>IL6 </it>and <it>FGB </it>genes, systemic inflammation, COPD risk and COPD-related phenotypes (respiratory impairment, exercise capacity and body composition).</p> <p>Methods</p> <p>Eighteen SNPs in three genes, representing optimal haplotype-tagging sets, were genotyped in 355 COPD patients and 195 healthy smokers. Plasma levels of CRP, IL-6 and FG were measured in the total study group. Differences in haplotype distributions were tested using the global and haplotype-specific statistics.</p> <p>Results</p> <p>Raised plasma levels of CRP, IL-6 and fibrinogen were demonstrated in COPD patients. However, COPD population was very heterogeneous: about 40% of patients had no evidence of systemic inflammation (CRP < 3 mg/uL or no inflammatory markers in their top quartile). Global test for haplotype effect indicated association of <it>CRP </it>gene and CRP plasma levels (P = 0.0004) and <it>IL6 </it>gene and COPD (P = 0.003). Subsequent analysis has shown that <it>IL6 </it>haplotype H2, associated with an increased COPD risk (p = 0.004, OR = 4.82; 1.64 to 4.18), was also associated with very low CRP levels (p = 0.0005). None of the genes were associated with COPD-related phenotypes.</p> <p>Conclusion</p> <p>Our findings suggest that common genetic variation in <it>CRP </it>and <it>IL6 </it>genes may contribute to heterogeneity of COPD population associated with systemic inflammation.</p

    Healthy subjects express differences in clinical responses to inhaled lipopolysaccharide that are related with inflammation and with atopy.

    No full text
    Endotoxin and its purified derivative LPS are important contaminants of both domestic and occupational environments that have been related to airway diseases. A body of data suggests that there is considerable interindividual variability in LPS sensitivity.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Evaluation of oral corticosteroids and phosphodiesterase-4 inhibitor on the acute inflammation induced by inhaled lipopolysaccharide in human.

    No full text
    Endotoxins are pro-inflammatory substances present in the environment. In man, inhalation of its purified derivative lipopolysaccharide (LPS) induces inflammation related to macrophages and neutrophils. Corticosteroids and phosphodiesterase (PDE)-4 inhibitors have inhibiting effects on macrophages and neutrophils, respectively. This study investigated the effect of prednisolone and of the PDE-4 inhibitor cilomilast on the LPS-induced acute inflammation.Comparative StudyJournal ArticleRandomized Controlled TrialSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Association between CD14 polymorphisms and serum soluble CD14 levels: effect of atopy and endotoxin inhalation.

    No full text
    A prerequisite for activation of the innate immune response by endotoxin is its binding to CD14.Journal ArticleResearch Support, N.I.H. ExtramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    • …
    corecore