17 research outputs found

    Cranial anatomy of Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio, Italy/Switzerland. Taxonomic and palaeobiological implications

    Get PDF
    Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was described on the basis of a single fossil excavated near Besano (Italy) nearly three decades ago. Here, we re-examine its cranial osteology and assign five additional specimens to B. leptorhynchus, four of which were so far undescribed. All of the referred specimens were collected from the Middle Triassic outcrops of the Monte San Giorgio area (Italy/Switzerland) and are housed in various museum collections in Europe. The revised diagnosis of the taxon includes the following combination of cranial characters: extreme longirostry; an elongate frontal not participating in the supratemporal fenestra; a prominent `triangular process' of the quadrate; a caudoventral exposure of the postorbital on the skull roof; a prominent coronoid (preglenoid) process of the surangular; tiny conical teeth with coarsely-striated crown surfaces and deeply-grooved roots; mesial maxillary teeth set in sockets; distal maxillary teeth set in a short groove. All these characters are shared with the holotype of Mikadocephalus gracilirostris Maisch & Matzke, 1997, which we consider as a junior synonym of B. leptorhynchus. An updated phylogenetic analysis, which includes revised scores for B. leptorhynchus and several other shastasaurids, recovers B. leptorhynchus as a basal merriamosaurian, but it is unclear if Shastasauridae form a clade, or represent a paraphyletic group. The inferred body length of the examined specimens ranges from 1 m to about 8 m. The extreme longirostry suggests that B. leptorhynchus primarily fed on small and elusive prey, feeding lower in the food web than an apex predator: a novel ecological specialisation never reported before the Anisian in a large diapsid. This specialization might have triggered an increase of body size and helped to maintain low competition among the diverse ichthyosaur fauna of the Besano Formation

    Ontogenetic variation in the cranium of Mixosaurus cornalianus, with implications for the evolution of ichthyosaurian cranial development

    Full text link
    Relatively complete ontogenetic series are comparatively rare in the vertebrate fossil record. This can create biases in our understanding of morphology and evolution, since immaturity can represent a source of unrecognized intraspecific variation in both skeletal anatomy and ecology. In the extinct marine reptile clade Ichthyopterygia, ontogenetic series were widely studied only in some Jurassic genera, while the ontogeny of the oldest and most basal members of the clade is very poorly understood. Here, we investigate cranial ontogeny in Mixosaurus cornalianus, from the Middle Triassic Besano Formation of the Swiss and Italian Alps. This small-bodied taxon is represented by a wealth of material from multiple size classes, including fetal material. This allows us to assess ontogenetic changes in cranial morphology, and identify stages in the ontogenetic trajectory where divergence with more derived ichthyosaurs has occurred. Early ontogenetic stages of Mixosaurus show developmental patterns that are reminiscent of the presumed ancestral (early diverging sauropsid) condition. This is prominently visible in the late fetal stage in both the basioccipital, which shows morphology akin to basal tubera, and in the postorbital, which has a triradiate head. The ontogenetic trajectory of at least some of the cranial elements of Mixosaurus is therefore likely still very akin to the ancestral condition, even though the adult cranium diverges from the standard diapsid morphology

    Evaluating the existence of vertebrate deadfall communities from the Early Jurassic posidonienschiefer formation

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaLarge vertebrate carcasses contain significant amounts of nutrients that upon death are transferred from the water column to the benthos, enriching the immediate environment. The organisms exploiting these ephemeral resources vary as the carcass decays, creating an ecological succession: mobile scavengers arrive first, followed by enrichment opportunists, sulfophilic taxa, and lastly reef species encrusting the exposed bones. Such communities have been postulated to subsist on the carcasses of Mesozoic marine vertebrates, but are rarely documented in the Jurassic. In particular, these communities are virtually unknown from the Early Jurassic, despite the occurrence of several productive fossil Lagerstätte that have produced thousands of vertebrate bones and skeletons. We review published occurrences and present new findings related to the development of deadfall communities in the Toarcian Posidonienschiefer Formation of southwestern Germany, focusing on the classic locality of Holzmaden. We report the presence of the mobile scavenger, enrichment opportunist, and reef stages, and found potential evidence for the poorly documented sulfophilic stage. Although rare in the Posidonienschiefer Formation, such communities do occur in association with exceptionally preserved vertebrate specimens, complementing a growing body of evidence that a temporarily oxygenated benthic environment does not preclude exceptional vertebrate fossil preservation

    Oldest record of Machimosaurini (Thalattosuchia, Teleosauroidea): teeth and scavenging traces from the Middle Jurassic (Bajocian) of Switzerland

    Get PDF
    The Jurassic period was a time of major diversification for Mesozoic marine reptiles, including Ichthyosauria, Plesiosauria and thalattosuchian Crocodylomorpha. The latter originated in the Early Jurassic and thrived during the Late Jurassic. Unfortunately, the Middle Jurassic, a crucial time in their evolution, has a poor fossil record. Here, we document the first evidence of macrophagous/durophagous Machimosaurini-tribe teleosauroid thalattosuchians from the late Bajocian (ca 169 Ma) in the form of three robust tooth crowns with conical blunt shapes and anastomosed pattern of thick enamel ridges towards the apex, associated with the skeleton of a large ichthyosaur lacking preserved tooth crowns. The tooth crowns were found on the posterior section of the lower jaw (left angular), a lacrimal and the axis neural arch of the ichthyosaur. In addition, some of the distal sections of the posterior dorsal ribs of the ichthyosaur skeleton exhibit rounded bite marks and some elongated furrows that fit in size and shape with the Machimosaurini teeth. These marks, together with the absence of healing in the rib bone are interpreted here as the indicators of peri- to post-mortem scavenging by a Machimosaurini teleosauroid after the large ichthyosaur carcass settled on the floor of a shallow ocean

    Heads or tails first? Evolution of fetal orientation in ichthyosaurs, with a scrutiny of the prevailing hypothesis

    Full text link
    According to a longstanding paradigm, aquatic amniotes, including the Mesozoic marine reptile group Ichthyopterygia, give birth tail-first because head-first birth leads to increased asphyxiation risk of the fetus in the aquatic environment. Here, we draw upon published and original evidence to test two hypotheses: (1) Ichthyosaurs inherited viviparity from a terrestrial ancestor. (2) Asphyxiation risk is the main reason aquatic amniotes give birth tail-first. From the fossil evidence, we conclude that head-first birth is more prevalent in Ichthyopterygia than previously recognized and that a preference for tail-first birth likely arose in derived forms. This weakens the support for the terrestrial ancestry of viviparity in Ichthyopterygia. Our survey of extant viviparous amniotes indicates that fetal orientation at birth reflects a broad diversity of factors unrelated to aquatic vs. terrestrial habitat, further undermining the asphyxiation hypothesis. We propose that birth preference is based on parturitional mechanics or carrying efficiency rather than habitat

    Cranial morphology of the tanystropheid Macrocnemus bassanii unveiled using synchrotron microtomography

    Get PDF
    The genus Macrocnemus is a member of the Tanystropheidae, a clade of non-archosauriform archosauromorphs well known for their very characteristic, elongated cervical vertebrae. Articulated specimens are known from the Middle Triassic of Alpine Europe and China. Although multiple articulated specimens are known, description of the cranial morphology has proven challenging due to the crushed preservation of the specimens. Here we use synchrotron micro computed tomography to analyse the cranial morphology of a specimen of the type species Macrocnemus bassanii from the Besano Formation of Monte San Giorgio, Ticino, Switzerland. The skull is virtually complete and we identify and describe the braincase and palatal elements as well the atlas-axis complex for the first time. Moreover, we add to the knowledge of the morphology of the skull roof, rostrum and hemimandible, and reconstruct the cranium of M. bassanii in 3D using the rendered models of the elements. The circumorbital bones were found to be similar in morphology to those of the archosauromorphs Prolacerta broomi and Protorosaurus speneri. In addition, we confirm the palatine, vomer and pterygoid to be tooth-bearing palatal bones, but also observed heterodonty on the pterygoid and the palatine.Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

    Cranial anatomy of Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 (Reptilia: Ichthyosauria) from the Middle Triassic Besano Formation of Monte San Giorgio, Italy/Switzerland: taxonomic and palaeobiological implications

    Get PDF
    Besanosaurus leptorhynchus Dal Sasso & Pinna, 1996 was described on the basis of a single fossil excavated near Besano (Italy) nearly three decades ago. Here, we re-examine its cranial osteology and assign five additional specimens to B. leptorhynchus, four of which were so far undescribed. All of the referred specimens were collected from the Middle Triassic outcrops of the Monte San Giorgio area (Italy/Switzerland) and are housed in various museum collections in Europe. The revised diagnosis of the taxon includes the following combination of cranial characters: extreme longirostry; an elongate frontal not participating in the supratemporal fenestra; a prominent ‘triangular process’ of the quadrate; a caudoventral exposure of the postorbital on the skull roof; a prominent coronoid (preglenoid) process of the surangular; tiny conical teeth with coarsely-striated crown surfaces and deeply-grooved roots; mesial maxillary teeth set in sockets; distal maxillary teeth set in a short groove. All these characters are shared with the holotype of Mikadocephalus gracilirostris Maisch & Matzke, 1997, which we consider as a junior synonym of B. leptorhynchus. An updated phylogenetic analysis, which includes revised scores for B. leptorhynchus and several other shastasaurids, recovers B. leptorhynchus as a basal merriamosaurian, but it is unclear if Shastasauridae form a clade, or represent a paraphyletic group. The inferred body length of the examined specimens ranges from 1 m to about 8 m. The extreme longirostry suggests that B. leptorhynchus primarily fed on small and elusive prey, feeding lower in the food web than an apex predator: a novel ecological specialisation never reported before the Anisian in a large diapsid. This specialization might have triggered an increase of body size and helped to maintain low competition among the diverse ichthyosaur fauna of the Besano Formation

    Osteological re-description of Macrocnemus fuyuanensis (Archosauromorpha, Tanystropheidae) from the Middle Triassic of China

    Full text link
    Over the past decades, an increasing number of reptiles have been described from the Middle Triassic of southern parts of China. Marine reptiles such as thalattosaurs, ichthyosaursand sauropterygians dominated these paleofaunas and are known to have had a Tethys-wide distribution. Indeed, several species have been described from both the eastern and western margins of that ancient ocean. The last addition to this list was a less common terrestrial reptile, Macrocnemus fuyuanensis, first discovered in Yunnan Province. The species was also tentatively inferred to be represented by a single disarticulated specimen in the paleofauna from the World Heritage Site of Monte San Giorgio in southern Switzerland (as Macrocnemus aff. fuyuanensis). The initial referral was mainly based on limb proportions and ratios rather than on discrete osteological characters, partially due to a limited anatomical description of the holotype specimen of M. fuyuanensis. Here we provide a re-description of the anatomy of the complete skeleton of the holotype and compare it with the available referred specimens. Our re-analysis shows that the pectoral girdle of the holotype specimen is more complete than previously reported, revealing the shape of the interclavicle, which is only partially exposed in the only referred specimen from China but well-preserved in the specimen from Europe. The interclavicle of M. fuyuanensis can be distinguished from M. bassanii by its short and fusiform posterior process and anterior facing rod-like processes that extend from a common base enclosing a narrow V-shaped median notch, among other features, and is here inferred to be the most important bone for discriminating species of Macrocnemus, apart from the limb ratios. We further document in detail the cranial anatomy of the holotype, which is virtually identical to that of the crania of M. bassanii, and due to its exquisite preservation and preparation, it adds important information on the palate, which was previously poorly known for Macrocnemus

    Modeling tooth enamel in FEA comparisons of skulls:Comparing common simplifications with biologically realistic models

    Get PDF
    Summary: Palaeontologists often use finite element analyses, in which forces propagate through objects with specific material properties, to investigate feeding biomechanics. Teeth are usually modeled with uniform properties (all bone or all enamel). In reality, most teeth are composed of pulp, dentine, and enamel. We tested how simplified teeth compare to more realistic models using mandible models of three reptiles. For each, we created models representing enamel thicknesses found in extant taxa, as well as simplified models (bone, dentine or enamel). Our results suggest that general comparisons of stress distribution among distantly related taxa do not require representation of dental tissues, as there was no noticeable effect on heatmap representations of stress. However, we find that representation of dental tissues impacts bite force estimates, although magnitude of these effects may differ depending on constraints. Thus, as others have shown, the detail necessary in a biomechanical model relates to the questions being examined

    New plesiosaurid material from the Maastrichtian type area, the Netherlands

    No full text
    Here we report on a newly collected, well-preserved vertebral centrum of a plesiosaur from the type area of the Maastrichtian Stage in southern Limburg. The specimen is interpreted as a caudal vertebra that originated from an osteologically immature or juvenile individual, as evidenced by the position of the pedicular facets, the presence of a notochord pit and the absence of fused neural arches. It adds to the meagre record of sauropterygians in the area
    corecore