556 research outputs found

    Microscopic biophysical model of self-organization in tissue due to feedback between cell- and macroscopic-scale forces

    Get PDF
    We develop a microscopic biophysical model for self-organization and reshaping of artificial tissue, that is codriven by microscopic active forces between cells and an extracellular matrix (ECM), and macroscopic forces that develop within the tissue, finding close agreement with experiment. Microscopic active forces are stimulated by μm-scale interactions between cells and the ECM within which they exist, and when large numbers of cells act together these forces drive, and are affected by, macroscopic-scale self-organization and reshaping of tissues in a feedback loop. To understand this loop, there is a need to (1) construct microscopic biophysical models that can simulate these processes for the very large number of cells found in tissues, (2) validate and calibrate those models against experimental data, and (3) understand the active feedback between cells and the extracellular matrix, and its relationship to macroscopic self-organization and reshaping of tissue. Our microscopic biophysical model consists of a contractile network representing the ECM, that interacts with a large number of cells via dipole forces, to describe macroscopic self-organization and reshaping of tissue. We solve the model using simulated annealing, finding close agreement with experiments on artificial neural tissue. We discuss the calibration of model parameters. We conclude that feedback between microscopic cell-ECM dipole interactions and tissue-scale forces is a key factor in driving macroscopic self-organization and reshaping of tissue. We discuss the application of the biophysical model to the simulation and rational design of artificial tissues

    Re-entrant ferroelectricity in liquid crystals

    Full text link
    The ferroelectric (Sm C^*) -- antiferroelectric (Sm CA^*_A) -- reentrant ferroelectric (re Sm C^*) phase temperature sequence was observed for system with competing synclinic - anticlinic interactions. The basic properties of this system are as follows (1) the Sm C^* phase is metastable in temperature range of the Sm CA^*_A stability (2) the double inversions of the helix handedness at Sm C^* -- Sm CA^*_A and Sm CA^*_A% -- re-Sm C^* phase transitions were found (3) the threshold electric field that is necessary to induce synclinic ordering in the Sm CA^*_A phase decreases near both Sm CA^*_A -- Sm C^* and Sm CA^*_A -- re-Sm C^* phase boundaries, and it has maximum in the middle of the Sm CA^*_A stability region. All these properties are properly described by simple Landau model that accounts for nearest neighboring layer steric interactions and quadrupolar ordering only.Comment: 10 pages, 5 figures, submitted to PR

    Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity

    Get PDF
    DNA base damage is an important contributor to genome instability, but how the formation and repair of these lesions is affected by the genomic landscape and contributes to mutagenesis is unknown. Here, we describe genome-wide maps of DNA base damage, repair, and mutagenesis at single nucleotide resolution in yeast treated with the alkylating agent methyl methanesulfonate (MMS). Analysis of these maps revealed that base excision repair (BER) of alkylation damage is significantly modulated by chromatin, with faster repair in nucleosome-depleted regions, and slower repair and higher mutation density within strongly positioned nucleosomes. Both the translational and rotational settings of lesions within nucleosomes significantly influence BER efficiency; moreover, this effect is asymmetric relative to the nucleosome dyad axis and is regulated by histone modifications. Our data also indicate that MMS-induced mutations at adenine nucleotides are significantly enriched on the nontranscribed strand (NTS) of yeast genes, particularly in BER-deficient strains, due to higher damage formation on the NTS and transcription-coupled repair of the transcribed strand (TS). These findings reveal the influence of chromatin on repair and mutagenesis of base lesions on a genome-wide scale and suggest a novel mechanism for transcription-associated mutation asymmetry, which is frequently observed in human cancers

    RSK1 promotes murine breast cancer growth and metastasis

    Get PDF
    Introduction. Triple-negative breast cancer (TNBC), representing over 15% of all breast cancers, has a poorerprognosis than other subtypes. There is no effective targeted treatment available for the TNBC sufferers. Ribosomal S6 kinases (RSKs) have been previously proposed as drug targets for TNBC based on observations that 85% of these tumors express activated RSKs.Materials and methods. Herein we examined an involvement of RSK1 (p90 ribosomal S6 kinase 1) in a regulation of TNBC growth and metastatic spread in an animal model, which closely imitates human disease. Micewere inoculated into mammary fat pad with 4T1 cells or their RSK1-depleted variant. We examined tumorgrowth and formation of pulmonary metastasis. Boyden chamber, wound healing and soft agarose assays wereperformed to evaluate cells invasion, migration and anchorage-independent growth.Results. We found that RSK1 promoted tumor growth and metastasis in vivo. After 35 days all animals inoculatedwith control cells developed tumors while in the group injected with RSK1-negative cells, there were 75%tumor-bearing mice. Average tumor mass was estimated as 1.16 g and 0.37 g for RSK1-positive vs. -negativesamples, respectively (p < 0.0001). Quantification of the macroscopic pulmonary metastases indicated that micewith RSK1-negative tumors developed approximately 85% less metastatic foci on the lung surface (p < 0.001).This has been supported by in vitro data presenting that RSK1 promoted anchorage-independent cell growthand migration. Moreover, RSK1 knock-down corresponded with decreased expression of cell cycle regulatingproteins, i.e. cyclin D3, CDK6 and CDK4.Conclusions. We provide evidence that RSK1 supports tumor growth and metastatic spread in vivo as well asin vitro migration and survival in non-adherent conditions. Further studies of RSK1 involvement in TNBC progression may substantiate our findings, laying the foundations for development of anti-RSK1-based therapeuticstrategies in the management of patients with TNBC

    Tn-Seq Analysis Identifies Genes Important for Yersinia pestis Adherence during Primary Pneumonic Plague

    Get PDF
    Following inhalation, Yersinia pestis rapidly colonizes the lung to establish infection during primary pneumonic plague. Although several adhesins have been identified in Yersinia spp., the factors mediating early Y. pestis adherence in the lung remain unknown. To identify genes important for Y. pestis adherence during primary pneumonic plague, we used transposon insertion sequencing (Tn-seq). Wild-type and capsule mutant (Δcaf1) Y. pestis transposon mutant libraries were serially passaged in vivo to enrich for nonadherent mutants in the lung using a mouse model of primary pneumonic plague. Sequencing of the passaged libraries revealed six mutants that were significantly enriched in both the wild-type and Δcaf1 Y. pestis backgrounds. The enriched mutants had insertions in genes that encode transcriptional regulators, chaperones, an endoribonuclease, and YPO3903, a hypothetical protein. Using single-strain infections and a transcriptional analysis, we identified a significant role for YPO3903 in Y. pestis adherence in the lung and showed that YPO3903 regulated transcript levels of psaA, which encodes a fimbria previously implicated in Y. pestis adherence in vitro. Deletion of psaA had a minor effect on Y. pes-tis adherence in the lung, suggesting that YPO3903 regulates other adhesins in addition to psaA. By enriching for mutations in genes that regulate the expression or assembly of multiple genes or proteins, we obtained screen results indicating that there may be not just one dominant adhesin but rather several factors that contribute to early Y. pestis adherence during primary pneumonic plague

    The concentration of three anti-seizure medications in hair: the effects of hair color, controlling for dose and age

    Get PDF
    BACKGROUND: This paper assess the relationship between the quantity of three anti-seizure medications in hair and the color of the analyzed hair, while controlling for the effects of dose, dose duration, and patient age for 140 clinical patients undergoing anti-seizure therapy. Three drugs are assessed: carbamazepine (40 patients), valproic acid (40 patients), and phenytoin (60 patients). The relationship between hair assay results, hair color, dose, dose duration, and age is modeled using an analysis of covariance. The covariance model posits the hair assay results as the dependent variable, the hair color as the qualitative categorical independent variable, and dose, dose duration, and age as covariates. The null hypothesis assessed is that there is a no relationship between hair color and the quantity of analyte determined by hair assay such that darker colored hair will demonstrate higher concentrations of analyte than lighter colored hair. RESULTS: The analysis reveals that there is a significant relationship between dose and concentration for all hair color categories independent of the other covariates or the categorical independent variable. CONCLUSION: There does not appear to be any relationship between carbamazepine concentration and hair color. There is a weak relationship between hair color and valproic acid concentration, which the data suggest may be mediated by age. There is a significant, moderate relationship between phenytoin concentration and hair color such that darker colored hair has greater concentration values than lighter colored hair

    Tup1 stabilizes promoter nucleosome positioning and occupancy at transcriptionally plastic genes

    Get PDF
    Despite technical advances, the future of chromatin mapping studies requires an ability to draw accurate comparisons between different chromatin states to enhance our understanding of genome biology. In this study, we used matched chromatin preparations to enable specific and accurate comparisons of Saccharomyces cerevisiae chromatin structures in the presence and absence of the co-repressor protein Tup1. Analysis of wild-type and tup1 Δ chromatin data sets revealed unique organizational themes relating to the function of Tup1. Regulatory regions bound by Tup1 assumed a distinct chromatin architecture composed of a wide nucleosome-depleted region, low occupancy/poorly positioned promoter nucleosomes, a larger number and wider distribution of transcription factor-binding sites and downstream genes with enhanced transcription plasticity. Regions of Tup1-dependent chromatin structure were defined for the first time across the entire yeast genome and are shown to strongly overlap with activity of the chromatin remodeler Isw2. Additionally, Tup1-dependent chromatin structures are shown to relate to distinct biological processes and transcriptional states of regulated genes, including Tup1 stabilization of Minus 1 and Minus 2 promoter nucleosomes at actively repressed genes. Together these results help to enhance our mechanistic understanding of Tup1 regulation of chromatin structure and gene expression

    Linearization of Cohomology-free Vector Fields

    Full text link
    We study the cohomological equation for a smooth vector field on a compact manifold. We show that if the vector field is cohomology free, then it can be embedded continuously in a linear flow on an Abelian group

    Reliability and usability of tourism climate indices.

    Get PDF
    Tourism climate indices (TCI) are commonly used to describe the climate conditions suitable for tourism activities, from the planning, investment or daily operations perspectives. A substantial amount of research has been carried out, in particular with respect to new indices formulae adapted to specific tourism products, and parameters and their weighting, taking into account surveys on the stated preferences of tourists, especially in terms of comfort. This paper illustrates another field of research, which seeks to better understand the different sources of uncertainty associated with indices. Indeed, slight differences in formula thresholds, variations in computation methods, and also the use of multimodel ensembles create nuances that affect the ways in which indices projections are usually presented. Firstly, we assess the impact of differences in preference surveys on the definition of indices thresholds, in particular for thermal comfort. Secondly, we compare computation methods for France, showing the need to better specify detailed data sources and their use to ensure the comparability of results. Thirdly, using multimodel ensembles for the Mediterranean basin, we assess the uncertainty inherent in long-term projections, which are used in modelling the economic impact of climate change. This paper argues in favour of a more cautious use of tourism comfort indices, with more consideration given to the robustness of data (validation, debiasing, uncertainty assessment, etc.) and users’ needs, from the climate services perspective.This paper was written by a team participating in the EU FP7 project CLIM-RUN “Climate Local Information in the Mediterranean region Responding Users Needs” (2011–2014)
    corecore